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Abstract: The article aims to develop a machine-learning algorithm that can predict student’s graduation in the Industrial Engineering 
course at the Federal University of Amazonas based on their performance data. The methodology makes use of an information package 
of 364 students with an admission period between 2007 and 2019, considering characteristics that can affect directly or indirectly in 
the graduation of each one, being: type of high school, number of semesters taken, grade-point average, lockouts, dropouts and course 
terminations. The data treatment considered the manual removal of several characteristics that did not add value to the output of the 
algorithm, resulting in a package composed of 2184 instances. Thus, the logistic regression, MLP and XGBoost models developed and 
compared could predict a binary output of graduation or non-graduation to each student using 30% of the dataset to test and 70% to 
train, so that was possible to identify a relationship between the six attributes explored and achieve, with the best model, 94.15% of 
accuracy on its predictions. 

Keywords: Engineering retention, supervised learning, classification, graduation forecast. 

To cite this article: Canto, N. G., Oliveira, M. A., & Veroneze, G. M. (2022). Supervised learning applied to graduation forecast of 
industrial engineering students. European Journal of Educational Research, 11(1), 325-337. https://doi.org/10.12973/eu-jer.11.1.325 
 

Introduction 

The development of technologies using machine learning has shown explosive growth in the processes of creating 
products or services currently delivered to the market. This area of research emerges as a branch of artificial intelligence 
and exists as a basic principle of technologies aimed at speech recognition on smartphones, forecasting prices for the 
stock exchange, recommending films on streaming platforms, identifying diseases from the recognition of ultrasound 
images, among other applications, so that it can be described as “the science (and art) of programming computers in such 
a way that they can learn from data” (Géron, 2017).  

Among the machine learning methods currently available, there is supervised and unsupervised learning. The first one 
will be the basis for this research because it involves learning from the visualization of labels (answers) of part of the 
data, so that the algorithm can predict new labels for the test data based on the learning relationships it found in the 
training data. 

In addition, learning methods, in general terms, seeks to find answers to certain types of problems: those in which the 
relationships between the input data generate a continuous response (such as car prices), those in which this relationship 
generates a discrete response (such as vehicle types) or even those in which the answer is unknown so that it is necessary 
to search for a standardization by the algorithm according to the characteristics delivered to it. 

In this context, a problem common to several undergraduate courses at public universities is identified: the low rate of 
student graduations. Veenstra et al. (2009) emphasizes that when it comes to sciences and engineering fields it turns out 
the retention rate is even lower, and the reasons can be cognitive, such as GPA or High School grades in general, non-
cognitive, such as family support, financial difficulties, healthy or characteristics related to the color, gender, habits or 
expectations of each student. 

So, delimited to the Industrial Engineering course at the Federal University of Amazonas (UFAM), the research 
development department, the statistics involved in this problem showed that, in a database of 364 students with an 
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admission period between 2007 and 2019, the index of graduations until the second semester of 2019 is 17.8% for the 
universe evaluated of possible graduates (considering the period of five years of course), in addition to presenting an 
index of 12.4% of retired or dropout students (considering the universe of evaluated samples). 

Thus, the research starts from the hypothesis that certain parameters related to the performance of each student 
throughout the course can describe their result (graduation or non-graduation). Therefore, it aims to identify this binary 
output through a classifying machine learning algorithm that will learn the relationship between these data by visualizing 
them and predicting the results for data not previously seen.  

Literature Review 

The engineering retention problem 

The problem involved in this work has been extensively addressed in recent decades, as for example in Lin et al. (2008), 
which seeks, through cognitive (GPA, grades in sciences or mathematics, among others) and non-cognitive (motivation, 
leadership, expectations, among others) characteristics, to estimate the retention of first-year students of engineering 
using neural networks, so that this work achieved about 78% probability of detecting student retention, but only 40% 
for non-retention, indicating that non-cognitive and cognitive characteristics could partially describe the problem, being 
necessary the combination of other variables that can also influence the persistence of these students, such as family, 
economics and health issues. 

Similarly, using data from the University of Michigan, Veenstra et al. (2009) considers attributes similar to those of Lin 
et al. (2008), such as: High School Academic Achievement, Quantitative Skills, Study Habits, Commitment to Career and 
Educational Goals, Confidence in Quantitative Skills, Commitment to Enrolled College, Financial Needs, Family Support 
and Social Engagement. And it starts from the hypothesis that there is a direct correlation between the retention of 
engineering students and their GPA, so that, using logistic regression, it can identify that the characteristics High School 
Academic Achievement, Quantitative Skills, Commitment to Career and Education Goals and Confidence in Quantitative 
Skills predicted student success (GPA). 

More recently, also seeking to understand the issues involved in retaining engineering students, French et al. (2021), 
works on the understanding both genders about the psychological cost involved in the course, given that the perception 
of students may differ when focused on minorities, such as the case of women in engineering. This work shows that there 
is a perception on the part of this minority group, but it is a group with greater probability of graduation, compared to 
male respondents.  

Santacroce (2018) also emphasizes these results, showing that women are more likely to graduate with an engineering 
degree if they remain in the course after 2 years, even though their self-confidence is negatively affected by the 
stereotypes and majority men environment they face during the course (Jagacinski, 2013). Thus, the gender is an 
attribute to be considered as having great influence on the students results, as well as the skin color (Davis & Finelli, 
2007; Green et al., 2019; Palmer et al., 2011; Reichert & Absher, 1997; Ye et al., 2021). 

Besides that, a study carried out by Craig (2011) also emphasizes factors influencing retention and attrition of 
engineering students at historically black colleges and universities, such as: students working long hours brought on by 
insufficient financial aid; difficulty of the curriculum and poor teaching styles. In this study, the author also highlights 
possible strategies to solve these questions: enhanced advisement, tutorial, and mentoring activities.  

Similarly, Fletcher and Anderson-Rowland (2000) also considered strategies related to mentoring and advisement to 
improve the performance of a group of sixteen engineering students and achieved amazing results, including an increase 
of 79% on the cumulative GPA of these students, indicating feasible ways to solve the retention problem, which were also 
extensively investigated over the years (Chelberg & Bosman, 2019; Desai & Stefanek, 2017; Hartman et al., 2019; Lisberg 
& Woods, 2018; Shahhosseini et al., 2020; Stromei, 2000). 

Additionally, Honken and Ralston (2013) also discuss potential challenges that might be affecting the engineering low 
retention rate and highlights the lack of preparation in math and science as the top reason to students transfer out of 
engineering, followed by financial challenges and lack of time to study as the main reason to left university.  

This last reason is interesting since engineering courses differ from other majors mainly by the programmatic activities, 
where the curriculum requires engineering students to not only participating in educational enriching activities, but also 
to gaining marketable experiences (Lichtenstein et al., 2010), which highly affects the daily time these students dedicate 
to study.  

Furthermore, several other research sought to understand about the motivations behind the retention of students from 
Science, Technology, Engineering, and Mathematics (STEM) courses, considering different attributes, especially the 
cognitive ones, as addressed in this work (Coletti et al., 2014; García-Ros et al., 2019; Hieb et al., 2015; Koenig et al., 2012; 
Wang et al., 2015). 
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And comparing this common problem between STEM majors, Almatrafi et al. (2017) and Godfrey et al. (2010) found out 
even though the engineering retention is high and an issue to be worked on due to multiple reasons, like difficulties on 
understanding academic concepts, self-esteem or time issues, the persistence rates for this major is higher compared to 
college of sciences, highlighting the importance of studies related not only to engineering but, also, focused on the STEM 
science fields in general.  

Logistic regression and XGBoost 

First, logistic regression can be described as a linear model adequate when we have dichotomous outcome variables 
(Lemon et al., 2003; Subasi & Ercelebi, 2005). Kurt et al. (2008) emphasizes that this model is competent when predicting 
presence (or absence) of a characteristic or outcome based on values of predictor variables, a concept that allow us to 
understand the method as appropriate to find out the relationship between the characteristics involved in this research. 

Second, XGBoost is a supervised learning algorithm based on gradient boosting decision trees (Dhaliwal et al., 2018). It’s 
responsible to achieve state-of-the-art results in many machine learning competitions (Chen & Guestrin, 2016; Nielsen, 
2016), especially those involving tabular data. Dhaliwal et al. (2018) and Chen and Guestrin (2016) also highlights that 
XGBoost is highly effective in reducing computing time by providing optimal use of memory resources, which is one of 
its great benefits since computational cost is still a challenge when dealing with neural networks solutions, that’s why 
this algorithm has potential to be, also, an adequate solution to the graduation forecast problem presented.  

Artificial Neural Networks - MLP 

According to Akhgar et al. (2019) and Ngah and Bakar (2017), artificial neural networks, as the nomenclature suggests, 
are based on the human brain. This tool has been used as a prediction strategy in areas such as: maintenance management 
(Susto et al., 2015), identification of defective parts (Wang et al., 2019), diagnosis of diseases (Jiang et al., 2020), landslide 
predictions (Pham et al., 2017), among other applications. In a simplified way, this simulation created artificially, 
considers the information transfer process through a standardized scheme and composed of multiple processing units 
(Gehr et al., 2018). According to Tiwari and Khare (2015) the organization of these units takes place through layers that 
relate weights and inputs in order to identify the ideal outputs of the model.  

The diagram below shows one of the primary artificial neuron models, called the Perceptron model (Géron, 2017), this 
model indicates the inputs of an artificial neuron (characteristics of a problem), its synaptic weights (with which the 
inputs will be combined in a linear transformation), the result of a summation of these combinations and an activation 
function responsible for performing a transformation, commonly, nonlinear. 

 

Figure 1. Perceptron Artificial Neuron Model 

This model follows the vector representation below: 

𝑦𝑘 = 𝜑(𝒘𝒌
𝑇𝒙) 

On what 𝒘𝒌 = [𝑤𝑘0⋯𝑤𝑘𝑚]
𝑇 and 𝒙 = [1…𝑥𝑚]. Thus, the model admits linear classification, being able to predict outputs 

that can be separated by means of a hyperplane (binary).  
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Activation Functions 

The activation functions are used with a view to perform linear transformations or not of the output . These functions 
are important in an artificial neural network because it limits the output of a neuron (Ngah et al., 2016), influencing the 
network's flexibility and, consequently, its efficiency. 

Géron (2017) shows that, in principle, sigmoidal functions have long been used as activation functions, like: hyperbolic 
tangent, logistic function, among others; due to its satisfactory behavior in each layer of the network. 

However, with the advent of deep learning techniques, the ReLu rectifier activation function (Rectified Linear Unit) was 
more cost-effective compared to its performance in approximations (weight adjustments) in the data training stage, in 
addition to reducing computational cost (Lomuscio & Maganti, 2017). Currently, there are several variations of this 
function. 

The architecture of a neural network can be divided by two modes of propagation, namely: Feedforward Neural Network 
(FNN) and Recurrent Neural Network (RNN). On the one hand, for the first method, according to Jiang et al. al (2020), the 
network computes the direction between the layers in a direct way, in a single direction, until the exit of the network, 
following the equation below: 

𝑦(𝑛) = 𝜙(𝑥(𝑛); 𝜃) 

So that the network performs a mapping of the inputs 𝑥(𝑛) to an output 𝑦(𝑛) through the set of parameters 𝜃. On the 
other hand, the second method, according to Wanto et al. (2017), involves feedback in the network that allows the model 
to recalculate its synaptic weights. This characteristic defines a recurring network as a network that has memory. So, as 
new information is fed, the network searches for past information that can characterize it more accurately. This model 
can be described by the equation below: 

𝑦(𝑛) = 𝜙(𝑥(𝑛), 𝑦(𝑛 − 1); 𝜃) 

Where the mapping of entries 𝑥(𝑛) it is done considering the immediately previous output and its due adjustment 
parameters for the output calculation 𝑦(𝑛). This means we are dealing with a high flexible network depending on the 
number of layers and its depth, which can be a challenge when working with small datasets. 

Methodology 

Research Goal 

The article aims to develop a machine-learning algorithm that can predict the graduation of students in the Industrial 
Engineering course at the Federal University of Amazonas based on their performance data. 

Research Strategy 

The data collection considered the performance report of students in the Industrial Engineering course available on the 
e-Campus portal. 

Eligibility Criteria 

The target audience of the research consists of evaluating the data of students from the Industrial Engineering Course at 
the Federal University of Amazonas. 

Sample and Data Collection 

The data collection and analysis methodology considered the performance report of students in the Industrial 
Engineering course available on the e-Campus portal. This report was generated based on the enrollment period between 
2007 and 2019, and consists of information from 364 students. These characteristics were then evaluated based on their 
possible influence on the characteristic of interest in this work: the student’s graduation. 

Thus, the analysis methodology, as well as the supervised learning models, were based on the development of an 
algorithm in Python programming language under version 3.8.5 on Google Colaboratory (code available on GitHub 
repository SL-Algorithms) using 3 different methods: Logistic regression, a shallow MLP and the decision tree-based 
XGBoost, aiming to compare and choose the best of them. The construction of the prediction models followed the flow 
shown in the Figure 2. 

 

Figure 2. Flow of the Algorithm Construction 
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Firstly, the conversion of the input attributes file to the appropriate reading format was considered, which is done by .csv 
files (separated by commas). After that, the complete data were plotted using graphs that describe each of the attributes 
separately, in addition to the presentation of the correlation between attribute-attribute and attribute-output, as 
previously described. As a result, the data were randomly divided into two parts: training and testing. So that 30% of the 
data was destined for the testing stage, which has the objective of reproduce an on-campus application and cannot be 
used during the training stage to avoid any bias on the predictions. 

Thus, before submitting the data to the model, it was necessary to assess their balance, considering that the number of 
graduated students is lower than the number of non-graduated students and this situation can lead to a biased learning 
and impact the model’s performance on the test set. The Figure 3 explains this situation. 

 
Figure 3. Unbalanced Data 

As can be seen, only 9.4% of the data represent graduate students (class 1), which creates difficulties for the model to 
learn the characteristics that lead to this class. Thus, the application of a resampling feature in the training set was 
necessary, in order to artificially increase the amounts of data whose output is equal to 1 (graduate students). This 
process can be seen in Figure 4, which indicates a balance between the two outputs. 

 
Figure 4. Balanced Data 

With the data balanced and the initial parameters defined, the models were trained and the predictions along with the 
test data were performed for the Logistic Regression, MLP and XGBoost models. 

Analyzing of Data 

The analysis of the characteristics of entry considered the following attributes: grade-point average, semesters taken, 
courses terminations, type of school in high school, lockouts and dropouts, as shown in Figure 5 and Figure 6. 
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Figure 5. Input Characteristics 

The attributes related to the grade-point average and the semesters taken were divided into histograms, so that it is 
possible to notice, in the first case, a distribution displaced, since the average for approval considered at the university is 
equal to 5.0. In the second, it is possible to note two distinct peaks, the first at point 5 and the second at point 10, indicating 
that the data does not show uniform numbers of students per admission period. 

 
Figure 6. Input Characteristics 

In contrast, the attributes that are divided into classes could be presented in the graphs above. Firstly, the number of 
courses terminations have a high rate of retired students, an even greater number than graduates, as will be seen later, 
whether in the current course or not. On the side, the graph was divided into only two classes, namely: private schools 
(type 1) and public schools (type 2), so that the number of students from type two schools are more expressive. 

Then, the graph that lists the number of students by the number of enrollment lockouts indicates a low index for it, which 
differs from the graph on the side, which lists dropouts from the course and has a high index. It is important to highlight 
that the enrollment lockouts and dropouts from the course are attributes that can be performed more than once by the 
same student, since there is a period for canceling the action in the university system. Thus, the correlation between the 
attributes and the data output could be assessed, as can be seen in the Figure 7. 
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Figure 7. Correlation Map 

The attribute-attribute and attribute-output correlation map can identify the influence between all characteristics and 
their outputs, even if represented by classes. Thus, in the map above, it is possible to identify correlation levels close to 
zero in most of the points, however, positive and negative correlations, which indicate an influence between the data, 
could also be seen. For example, the relationship between the grade-point average and the number of courses 
terminations, which is inversely proportional, and the relationship between the grade-point average and the output, 
which appears to be in direct proportion. 

Findings / Results 

First, the training set was analyzed using logistic regression, as this is a categorical problem, and this analysis allowed us 
to verify an adequate accuracy value, given the limited amount of data for analysis. Then, the data were trained through 
a shallow MLP, with only two intermediate layers containing 6 and 5 neurons, respectively, using ReLU as activation 
function and Adam as it’s optimizer. In this case, the model had a performance similar to that found through logistic 
regression, however, it presented a very bumpy error surface (many local minima). Finally, the data were processed 
using XGBoost, which achieved an accuracy of around 94.15%, higher than the previous ones. 

Table 1. Models’ Accuracy Comparison 

Model Main parameters Accuracy Incorrect classifications 

Logistic Regression 
Penalty: l2 
Solver: lbfgs 

91.71% 17 

MLP 

2 layers (6-5 neurons) 
Initial learning rate: 0.01 
Epochs: 500 
Batch size: 32 

91.22% 18 

XGBoost 
Max depth: 3 
Eta: 0.3 
Epochs: 1000 

94.15% 12 

Therefore, considering XGBoost as the best estimator, its confusion matrix can be plotted to analyze the behavior of this 
classifier in the test set, which simulates the on-campus operation of the proposed model. 
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Figure 8. Confusion Matrix for XGBoost 

As can be seen, the matrix above lists the number of errors and hits in the model (y_pred) in relation to the test data 
(y_test), so that, on the one hand, the main diagonal indicates the correctness rates of the model, which is around 103 
true negatives and 90 true positives. On the other hand, the secondary diagonal shows the quantities of incorrect 
classifications performed by the model, being, then, 6 false positives and 6 false negative. With that, some metrics could 
be calculated, as can be seen bellow, which indicates the performance of the model for the test set. 

Table 2. Model Evaluation 

Metric Formulation Results 

Accuracy acc(�̂�(𝑥)) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 94.15% 

Precision Precision(�̂�(𝑥)) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 93.75% 

Recall Recall(�̂�(𝑥)) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 93.75% 

F-measure (1.0) 𝐹𝑚 =
(𝑚 + 1) × 𝑅𝑒𝑐𝑎𝑙𝑙(�̂�(𝑥)) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(�̂�(𝑥))

𝑅𝑒𝑐𝑎𝑙𝑙(�̂�(𝑥)) + 𝑚 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(�̂�(𝑥))
 93.75% 

Error rate 𝑝𝑒(�̂�(𝑥)) =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 5.85% 

Specificity Specificity(�̂�(𝑥)) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 94.50% 

False negative rate 𝑝𝑒
+(�̂�(𝑥)) =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 6.25% 

False positive rate 𝑝𝑒
−(�̂�(𝑥)) =

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 5.50% 

The first metric is accuracy, which relates the number of standards classified correctly in relation to the entire set of test 
data, indicating a result around 94% (12 incorrect classifications). This metric is one of the most important for the 
analysis of the model. However, other characteristics need to be evaluated in parallel, so the robustness of the model is 
verified. 

In this way, then, precision is presented, a metric that corresponds to the proportion of data referring to the positive class 
correctly classified in relation to all the examples attributed to the positive class. As can be seen, the precision obtained 
a good percentage of 93.75%, close to the accuracy achieved. 

In addition, the recall was also calculated and obtained a result of 93.75%, which indicates the rate of true positive, in a 
way that relates the proportion of examples of the positive class correctly classified and presented a result according to 
the precision, since their number of false negatives and false positives are equal.  

In this way, the metric f-measure could be calculated, which relates the two metrics mentioned earlier through a weighted 
harmonic mean, where 'm' is the weighting factor. This weighting factor is responsible for the importance given to each 
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of the metrics involved in the calculation, so that the value of 'm' used was equal to 1.0, which indicates that the 
importance of recall and precision are the same. Thus, the metric obtained, as expected, 93.75%, indicating a value close 
to 100%, which is the ideal value of the f-measure. 

Then, the model's error rate can also be seen in the table above, a metric that is inverse to the accuracy presented a result 
around of 5.85%. So, specificity was also calculated, indicating the rate of true negative, one of the best results among all 
the calculated metrics, which was around 94.50%, showing how the class with real values, in face of the artificially created 
values of class 1, represents gain to the model even though the data is balanced.  

Finally, the metrics involving the false negative and false-positive rates were calculated, so that the differences in 
classification could be viewed more intensely. Thus, the first was around 6.25% compared to 5.50% presented by the 
second, a great performance considering the set size and the number of attributes used. 

Discussion 

Through the comparative analysis between the supervised learning methods presented, it was possible to observe, firstly 
through accuracy, that logistic regression proved to be effective in the given classification task, although it was not the 
model with the highest performance. This result is interesting given that the method has a simple, linear proposal, used 
in older researches, such as Veenstra et al. (2009), and more recent ones, such as French et al. (2021), confirming it’s 
importance as a competitive estimator and which, in addition, was able to present a superior result than the one found 
through the more flexible, fully connected neural network, indicating the data used in training, to some extent, can be 
separated by means of a straight line.  

Furthermore, the results presented by the MLP network could show that, even though we have greater flexibility and can 
learn through synaptic adjustments of the network weights, this learning can be impacted by the amount of data 
available, so that the error surface can present numerous local minimums and not allowing an adequate search for the 
solution that brings the highest performance in the test set. 

Finally, we highlight that the performance of the decision tree-based algorithm, XGBoost, could confirm the statement 
made by Chen and Guestrin (2016) and Nielsen (2016) about its ability to generate state-of-the-art results in various 
machine learning problems, especially those involving tabular data, such as the one presented in this work. As seen, the 
algorithm was placed as an intermediate solution from the point of view of flexibility, that is, it is not as rigid as logistic 
regression, nor as flexible as the neural network, generating the most adequate solution for the binary classification 
problem we have. 

In this way, supervised learning techniques could identify the existence of a relationship between the six characteristics 
that were worked on and the data output: grade-point average, semesters taken, courses terminations, high school type, 
lockouts and dropouts. And this allows us to state that these attributes have a strong influence on student results and can 
be able to describe the problem presented quite adequately, highlighting the potential of the estimator in face of several 
works that seek to predict, in a certain way, the graduation or retention of students until the end of their courses, as in 
the surveys mentioned previously: Lin et al. (2008), Veenstra et al. (2009) and French et al. (2021). 

Furthermore, the existence of a relationship between these attributes makes possible for us to discuss about the ideal 
characteristics to invest on with strategies to increase student’s graduation rate having a small universe of possibilities 
(a total of 6 possibilities).  

In other words, we can analyze, mainly, the characteristics that could be improved by the university, such as: grade-point 
average, investing on different methodologies and developing a research to understand from the students and teachers 
what could be improved or maintained; type of high school, investing on extra courses to improve basic lacks on math or 
science subjects; courses terminations, lockouts and dropouts, implementing scholarships, assistance programs and 
upgrading laboratories and common areas to possibility a higher academic time dedication as well as the development 
of practical skills inside the university. 

With that, we can highlight the semesters taken is a fix attribute used to indicate to the learning algorithm the engineering 
course has a mean time to be completed, so, for now, the main strategies can be applied in 5 of the 6 attributes used on 
this research and the implementation order can be made by considering the correlation between each of them and the 
output of interest (students graduation or non-graduation). 

Conclusion  

The development of a machine-learning model through supervised learning algorithms is part of the range of predictive 
methodologies created under the aspect of artificial intelligence. This possibility is based primarily on the development 
of computer systems that are capable of storing a large amount of data. 

This application started from the hypothesis that several factors are responsible for the graduation (or not) of students 
of the Industrial Engineering course at the Federal University of Amazonas and as it could be seen, together, certain 
selected attributes had an influence on the study output. 
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More than the methodology used in the creation of a supervised learning algorithm that could learn based on this dataset, 
the work could present to the academic community a new way of applying information available in the university's own 
system, indicating the use of these data not only to statistical studies, but to studies that are aligned with 4.0 industry, 
such as artificial intelligence, and that bring the novelty of a rising area that needs to be further explored by the Industrial 
Engineer based on the multidisciplinary intrinsic to this profession.  

Thus, the way the machine learning area has been developing in recent years indicates that the implementation of a 
learning model is not limited to the areas of engineering or computer science, and can currently be applied to various 
problems, including problems common to the educational area, as seen on previous research, were the authors explored 
the reasons or motivations regarding to engineering students retention by using different techniques but achieving 
similar results, which implies we already have ways to understand this problem and propose effective solutions. 

With that, the good performance of the developed algorithm, as discussed in the previous session, indicates the 
importance of using these methods within the university itself as a base methodology for implementing improvements 
within the Industrial Engineering department or, even, the others that can make use of this algorithm for performance 
analysis. 

Thus, according to what was discussed, one of the main characteristics that are related to the output of the model is the 
data of grade-point average, with an influence proportional to the output. Thus, the study of teaching methodologies used 
in each of the disciplines is important for the individual student’s performance, in such a way that this performance is an 
important answer in relation to psychological aspects such as: student interest, excitement with the course, 
encouragement from teachers and self-esteem within the department. As a result, the department’s investment in 
methods that can reduce dropouts, lockouts and course terminations is essential to the student’s success, since the 
improvement in the grade-point average becomes a consequence of these factors mentioned because they are somewhat 
correlated. 

In addition, as it can be seen in the present work, the improvements to the model will occur according to the number of 
examples both classes (0 and 1) grow, as the model will be able to improve their learning with more examples and also 
with a greater number of students in class 1 (trained), since there would be a natural data balance. 

With that, the Industrial Engineering department will also be able to make use of the same algorithm developed in this 
work. Besides, it will be able to increase the database to improve the model predictions and check, then, the impacts 
happening in the department arising from new strategies implemented.  

Recommendations 

Although this research carried out an analysis of the performance of students from the Industrial Engineering Course 
during the years 2007 to 2019, it is recommended that the same analysis be carried out for the entire period of activity 
of the course, from its institutional creation to the present day. In addition, a similar study can be carried out within the 
Faculty of Technology and the courses it offers to the community, enabling analysis by course and the development of an 
institutional strategic plan. 

Also, it would be interesting to collect data of the final grades of students in the department in each of the subjects offered, 
so that the model output is based on the hypothesis that each of the subjects has a direct influence on student success or 
failure in the course, which would indicate a better direction of the department towards specific improvements to each 
of them.  

Limitations 

As limitations, it can be highlighted that this study involved the analysis only of students from the Industrial Engineering 
course at the Faculty of Technology, among other courses in the academic unit. The study was also limited to analyzing 
the performance of students from the year 2007 and not since the creation of the course, which dates back to 2004. 
Besides that, there were limitations related to the data treatment, since they were not on a format suitable to the 
algorithm, which makes important to the interested teachers or researchers to first open a project with a selected team 
only destinated to the analysis and organization of these data to later use. 
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