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Abstract: The aim of this work is to characterise the understanding that students in compulsory secondary education (14-16 years 
old) have of number sequences in graphical representations. The learning of numerical sequences is one of the first mathematical 
concepts to be developed in an infinite context. This study adopts the focus of semiotic representations as its theoretical framework. 
The participants consisted of 105 students and a qualitative methodology was used. The data collection instruments were a 
questionnaire and a semi-structured interview. The results allowed for three student profiles regarding number sequences in 
graphical representations to be identified. These profiles may facilitate a possible progression in the learning of number sequences 
for students in compulsory secondary education to be considered. Therefore, the results presented in this study can provide 
information about the learning hypotheses of mathematical tasks related to numerical sequences and can help in the design of such 
tasks. 
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Introduction 

Different studies have highlighted the importance of understanding the concept of sequences as a prerequisite for the 
understanding of other mathematical analysis concepts, such as understanding the concept of number series (Codes et 
al., 2013; Codes & González-Martín, 2017), in the concept of limits (Mamona, 1990; Roh, 2008; Sierpinska, 1990) or the 
introduction of the integral using Riemann sums (McDonald et al., 2000).  

Moreover, studies examining the concepts of mathematical analysis have noted the relevant role that representations 
have in the teaching and learning of said concepts, limits (Pons et al., 2012) in the concept of function (Amaya, T., 2020; 
Tall & Vinner, 1981) in the concept of derivatives (Ariza & Llinares, 2009; García et al., 2011;  Sánchez-Matamoros et al., 
2006), in the concept of integrals (Boigues et al., 2010; González & Aldana, 2010; Orton, 1983; Aranda & Callejo, 2015), 
in the concept of number sequences (Biza et al., 2020; Cañadas, 2007; Montenegro et al., 2018; Przenioslo 2006; Rivera, 
2013; Roh, 2008). 

Furthermore, regarding the concept of number sequences, different studies have outlined the role of representations. 
Some papers have specifically been focused on determining whether representation formats influence how students 
solve tasks (Biza et al., 2020; Djasuli et al., 2017; Przenioslo, 2006; Roh, 2008). The results of these studies show not 
only the importance of different representations being present but also the transformations between them. More 
specifically, Cañadas (2007) highlights the importance of representations for the understanding of the presence of 
analytical (numerical, algebraic) and graphical (number line and cartesian plane) means of representation. 

Regarding the concept of number sequence, in this paper, it is considered as the following: 

 “A sequence is an infinite set of numbers that are written in a specific order: a1, a2, a3..., an... The most fundamental point 
is that each member of the set has to be named with a natural subscript, with a1 being the first and, a2 the second, and in 
general, the nth term being an. We define the sequence as {an}, or simply an” (Stewart et al., 2007, p.178). 
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In the same way, Stewart defines arithmetic progressions in the following way: “An arithmetic sequence or progression, 
AP, consists of the form a, a+d, a+2d,... a+nd... The number “a” is the first term and d is the common difference between 
two consecutive terms. The nth term is given by an= a+(n-1)d” (Stewart et al., 2007, p.181). 

Lastly, Stewart defines a geometric progression as the following: “A geometric sequence or progression, GP, consists of 
the form a, ar, ar2, ar3,..., arn,... where a is the first element and “r ≠1” is the ratio of the progression. The nth term is 
given by an=arn-1. Unlike an arithmetic progression, where the difference between two consecutive terms is “d”, in a 
geometric progression, the quotient between an+1 and an is “r” for all “n” (Stewart et al., 2007, p.183). 

There are many ways of expressing the terms in a number sequence: through the general term, by recurrence through a 
set of steps that allow a term to be obtained from the previous ones, and by extension by giving a series of consecutive 
ordered terms.  

The aim of this study is to characterise the understanding that students in compulsory education have about the 
concept of number sequences through the coordination of two representations; graphical-linear and graphical-
cartesian. 

The theoretical framework regarding the semiotic representations in mathematics considered in this work (Duval, 
2006) is outlined below. The qualitative methodology used in the study and the results obtained through the analysis of 
the data are also detailed. The paper finishes with the conclusions and a discussion of the study.  

Literature Review 

A common denominator in studies about students’ understanding of mathematical concepts is the presence of 
representations. In this regard, many researchers note the presence and impacts of using representations: verbal, 
numerical, algebraic and graphic (Lesh et al., 1987), to gain an understanding of mathematical concepts (Altay et al., 
2014; Biza et al., 2020; Callejo & Zapatera, 2014; El Mouhayar & Jurdak, 2016; Montenegro et al., 2018; Moyer-
Packenham, 2005; Rivera & Becker, 2008; Warren & Cooper, 2008).  

A representation in mathematics is defined by Goldin (2008) as a configuration that can substitute an entity in any 
form. These representations are important when solving tasks that involve mathematical concepts. Montenegro et al. 
(2018) consider that the multiple representations of a mathematical concept are one of the main difficulties that 
students find themselves struggling with. 

Moreover, Duval (2006, 2017) notes that the change and coordination between different representations is a relevant 
factor for the understanding of mathematical concepts, and outlines that analysing the cognitive processes behind 
learning mathematics requires a change or orientation in the way tasks and problems are selected for students’ 
learning. These representations, changes and coordination must be considered as cognitive variables. Therefore, it is 
considered that to reach a certain level of understanding, the change between representations and the coordination in 
the different representations are important (Duval, 2006, 2017). 

The solving of a mathematical task is carried out in one representation but students must identify the same 
mathematical concept in different representations and use them. The representations used in the solving of a 
mathematical task always involve some transformation or conversion of semiotic representations.  

Moreover, although individuals may use different semiotic representations, solving of a mathematical task requires that 
they only choose one. In other words, the solving of a mathematical task requires internal coordination between the 
representations without this coordination of the two different representations meaning two different concepts, and 
without there being any relation between them. Therefore, for Duval (2016), conceptual understanding arises from the 
coordination of various representations and not from only one of them. 

This paper focuses on the graphical representation of the concept of number sequences. Two representations are 
considered: graphical-linear and graphical-cartesian. In the graph-linear representations, number sequences are 
represented as points on a number line (Figure 1); and in the graph-cartesian representations, number sequences are 
represented as points (n, an) on a cartesian plane (Figure 2).  
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 Figure 1. Graphical-linear representation                            Figure 2. Graphical-cartesian representation 

Methodology 

Research Design 

The methodology we are using is qualitative, using as a source of data two questionnaires of different nature, a first 
questionnaire of four tasks, which the students answered in a class session, and a second questionnaire designed for 
each student, based on the answers given to the first questionnaire, to deepen in those answers that either had not 
been argued, were not sufficiently justified or had not been answered.  

In this section we present the research methodology, which we have divided into three parts. In the first part we 
present the participants in the study, in the second part we present the data collection instruments used to carry out 
our research, and finally, we present the design of the analysis procedure, which has guided us in achieving our 
objectives for this study.  

Participants 

In this study, 105 students participated. They were in their final years of compulsory secondary education (14-16 years 
old) in a center offering this educational stage in a Spanish city. The students studied the didactic unit about number 
sequences in accordance with their official syllabus: the concept of sequence, finding regularities in sequences with 
integer and rational terms, arithmetic and geometric progressions (Official State Bulletin, 2015). 

Data Collection Instrument 

In this study, the data collection instrument consisted of two tasks that made up a more extensive questionnaire, which 
was based on a literature review of research on number sequences, Figures 3 and 4. 

The students responded to the questionnaire during class time. Once an analysis of the students’ responses and 
reasoning had been done, a semi-structured interview was carried out with each participant. The objective of the 
interview was to obtain further details about the responses that had not been explained or that brought about doubts in 
their interpretation. In the interview, the students had their written answers to the first questionnaire.  

Task 1 (Figure 3) presented a number sequence in a graphical-cartesian representation and, in order to solve it, 
students were required, in section a), to identify whether the points of the cartesian plane (n, an) corresponded with the 
nth term of the given sequence. In this way, and using a conversion to a numerical representation, students needed to 
identify that a2=6 was the equivalent of the point (2,6). Likewise, an analysis needed to be done to obtain a4 and a6.  
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Translation 

Task 1 

Let there be the number sequence whose graphical representation on the cartesian axes is as follows 

a) What is the second term, i.e. a2? and the fourth term a4 ? and the sixth term a6 ?  

b) Is there any term which is 16? and 13? Reason the answers 

c) Is it increasing or decreasing? Justify the answer 

d) What happens to an when n gets bigger and bigger? 

Figure 3. Task 1 of the questionnaire 

In order to respond to section b), students needed to follow the same method as for section a) but also needed to 
explicitly mention that the value of the abscissa had to be a natural number for it to be a term in the sequence and that 
this value also indicated which term of the sequence it was. 

For section c), students needed to analyse the data to compare consecutive terms. This analysis could be done directly 
on the graph or through a conversion to the numerical representation. They also needed to interpret the data to infer 
the behaviour of terms that were not specified in the graphical-cartesian representation. 

For section d), the students needed to follow the same method as section c) and interpret the data again. The expected 
answers could have been, among others, their strictly increasing monotonicity or divergence. 

In task 2 (Figure 4), sequences in three representations were presented: algebraic expressions, and graphical-linear 
and graphical-cartesian representations. Students were asked to relate the algebraic expression with one of the 
graphical-linear or graphical-cartesian representations. Not all the algebraic expressions of the sequences provided 
could be paired with one of the graphical representations; specifically, the number sequence in section a). Similarly, not 
all the graphical representations could be paired with an algebraic representation; in this case, specifically, graphical-
linear representation 4. 
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Translation 

Task 2 

Given the following numbers sequences: 

Relate them to their corresponding graphical representations, justifying each relation. 

Figure 4. Task 2 of the questionnaire 

To solve the task, students could find some concrete terms in the algebraic representation, find the equivalence in the 
graphical representation (linear or cartesian) and make a subsequent comparison. If one of the values did not 
correspond with the comparison, the students needed to discard the corresponding representation. If all values 
matched, the students needed to interpret that the same was true for all the values that were not explicitly listed. 

Analysis Procedure  

The analysis was focused on identifying the use of graphical-linear and graphical-cartesian representations, as well as 
the transformations and conversions that could be identified in the students’ answers. The data from the two data 
sources (the written questionnaire and the subsequent semi-structured interview which was personalised for each 
student according to the answers given to the written questionnaire) were considered together. We will now show, by 
means of an example, how we carried out the analysis procedure using the two data sources.  

Regarding the graphical-cartesian representation, in the first section of task 1 given in this representation, student e12 
had to carry out a conversion to a numerical representation to be able to respond to the section, in which they were 
asked for the value of certain terms of the sequence a2, a4 and a6. This student correctly analysed the graphical-
cartesian representation as they correctly assigned meaning to the role of each of the axes in it (the x-axis was the 
location of the term of the sequence and the y-axis was the value of the term of the sequence (n, an)). This can be seen 
in Figure 5, as interpreting the point (1,4) and the point (2,6) gives an answer of a2=a1+d. 6=4+d, then d=2, a4=10, 
a6=14, carrying out the conversion from the graphical-cartesian representation to the algebraic representation and 
then to the numerical representation correctly. 
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Translation: 

Resolution of the task (justifying each step) 

I apply the formula to justify the difference 
and add 2 to a5. 

Justify the answer 

a) a2, a4 are represented in the graph and that in the x-axis is 
represented when it is n and in the y-axis when it is an and a6 I 
find out by applying the formula seeing that the difference is two. 

Figure 5. Answer of student e12 to item a) of the questionnaire task 1 

In response to section b) from task 1, this student responded that 16 was a term in the sequence but that 13 was not as 
the sequence terms were all even (Figure 6). 

 

Translation: 

b) yes because all the even numbers from 4 onwards are represented 13 Does not appear because the even numbers 
are represented and this one is odd. 

Figure 6. Answer of student e12 to item b) of the questionnaire task 1 

Later, in the semi-structured interview, we asked the student to clarify their response. They told us that, when carrying 
out a conversion to an algebraic representation, the subscript n needed to be a natural number. The joint consideration 
of the questionnaire and the interview guarantees the reliability of the inference made (triangulation of data): 

Question: In section b from task 1, does the simple fact of being odd ensure that there is no term? Explain. 

e12: an= 2 +2n => a7 = 2 + 2n = 16,  

13 = 2 + 2n => 11 = 2n => n= 11/2 n = 5,5 => no, because n has to be a natural number. 

Findings / Results 

The results from the analysis of the students’ responses to the questionnaire and the semi-structured interview allowed 
us to characterise the different uses of the graphical representations, which are shown in the following table (Table 1).  

Table 1. Number of students in each of the graphical representations 

Representation  Number of students 
Incorrect use of the graphical representation  12 
Correct use of only the graphical-linear representation  15 
Correct use of the graphical representations 78 

We will now describe each of them. 

Incorrect use of the graphical representation  

The students from this group were characterised by an incorrect use of both the graphical-linear representation and 
the graphical-cartesian representation when solving the tasks.  
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An example of this error can be seen in student e31. When solving task 1, this student did not correctly analyse the 
graphical-cartesian representation since, when correctly converted to a numerical representation, the value of a2 was 6. 
However, this student considered that a2 equalled 6•2=12, and acted accordingly with a4 and a6 (Figure 7).  

 

Translation: 

b) There is no term worth 16 and no term worth 13 with this number sequence. 

c) It is increasing, it is ascending 

d) It is also increasing with it, since it is increasing. 

Figure 7. Answer of student e31 to task 1 of the questionnaire 

We confirmed this in the semi-structured interview: 

Question: For task 1, can you explain how you calculated the sequence terms using the graphic? 

e31: As it was the cartesian plane, what I did was place the cartesian product of the numbers below and above and what 
I got was the value of each term. 

This student responded to sections b), c) and d) carrying out the same conversion of the graphical-cartesian 
representation to the numerical representation as in the previous section. 

In task 2, the student incorrectly analysed the graphical-cartesian representation. In all sections of this task, the 
students needed to identify the same sequence in two different representations by carrying out a conversion. One of the 
representations was algebraic and a conversion needed to be done in section d) with the graphical-linear 
representation in section 3 and in section c) and b) with the graphical-cartesian in sections 1 and 2, respectively.  

Moreover, student e31 again carried out incorrect conversions between the algebraic and graphical-cartesian 
representations as they linked section c) with 2) and similarly carried out an incorrect conversion between the 
graphical-linear representation and the algebraic representation, due to an incorrect analysis of the graphical-linear 
representation, which became apparent when linking section b) with 4), as shown in Figure 8. 

 

Translation: 

a) This number sequence is related to graph number1, because 1 is subtracted from it 

b) This number sequence is related to four because the number eight marks the beginning of the number sequence. 

c) This number sequence is related to graph number 2 

Figure 8. Answer of student e31 to task 2 of the questionnaire 
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In the semi-structured interview, we asked the student about this and they confirmed that their errors came from 
incorrectly analyzing thegraphical-cartesian and graphical-linear representations. 

Question: For task 2, can you explain sections c) and b)? 

e31: In section c, it is 2 because, with it being negative, it is worth less and less and has a downward trend. In section b,  
the first value is 8 and, therefore, I found the 8 in the line. 

Correct use of only the graphical-linear representation  

The students from this group are characterised by the correct use of the graphical-linear representation when solving 
the task using a conversion (converting to a numerical or algebraic representation) when necessary. However, the 
students were not correct when solving the task that required them to use the graphical-cartesian representation.  

An example of this type of student can be seen in student e17. When solving task 1, this student did not correctly 
analyse the graphical-cartesian representation since, when correctly converted to a numerical representation, the value 
of a2 was 6. However, the student considered that the second term a2 was 6: 2=3, and acted accordingly with a4 and a6 
(Figure 9). 

 

Translation 

Resolution of the task (justifying each step) 

b) 16 yes because if we increase n in the table we arrive 
at the term 

13 no because it is a prime number and does not divide 
by any number. 

Justify the answer 

b) 16 yes 

 13 No 

c) It is increasing, because it increases 

d) That we keep increasing the number of the term of the 
number sequence. 

Figure 9. Answer of student e17 to task 1 of the questionnaire 

We confirmed this in the semi-structured interview: 

Question: For task 1 can you explain how you calculated the sequence terms using the graphic? 

e17: I calculated them using the two values from the line, the top one divided by the bottom one and I got the value of 
the final number, I think. 

Question: Can you further explain section b)? 

e17: 16 is indeed a value because you can divide it and get the number but 13 cannot do the same because as it is a 
prime number, it cannot be divided by another number to make 13. 

This student incorrectly responded to section b) as they considered divisibility, which was not related to the question. 
The student solved sections c) and d) with the same analysis errors in the graphical-cartesian representation as in the 
previous section. 

This same student, for all sections from task 2, needed to identify the same sequence in two different representations 
by carrying out a conversion. One of the representations was algebraic and the conversion needed to be carried out in 
section d) with the graphical-linear representation in section 3, and in section c) and b) with the graphical-cartesian in 
sections 1 and 2, respectively.  
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When the task needed a graphical-linear representation for its solution, student e17 used it correctly. This fact can be 
seen when, in answering, the student related section d in the algebraic representation given by the analytical 
expression an =2 n with the graphical-linear representation of graph 3. The student wrote: "3-d, because a1 is 2 and if 
we check a1 = 2· 1 =2 and the linear function is also 2", (see Figure 10). 

 

Translation: 

3-d) Because a1 is 2 and if you check a2 = 2-1 = 2, and the linear function is also 2. 

Figure 10. Answer of student e31 to task 2 of the questionnaire 

Therefore, we can consider that this student correctly converted the algebraic representation to a numerical 
representation and subsequently to a graphical-linear representation, as they confirmed in the semi-structured written 
interview. 

Question: So, what type of graphics do you think are the easiest to use for your interpretation?  

e17: Those that are on one line [referring to the graphical-linear representations] as you can see the values faster and 
they are much better represented. I have more problems with the ones that are two numbers above and below 
[referring to the graphical-cartesian representations]. 

In summary, when using the graphical-cartesian representation, the student had many difficulties in their 
interpretation, but when they used the graphical-linear representation, they correctly did so, carrying out correct 
conversions between the algebraic representation and the graphical-linear representation. 

Correct Use of Graphical Representation  

The students of this group are characterised by a correct use of both the graphical-linear and graphical-cartesian 
representation when solving the tasks using a conversion (converting to a numerical or algebraic representation), 
when necessary.  

An example of this can be found with student e92 who correctly used the graphical-cartesian representation. This can 
be seen when analysing the point (1,4), which led the student, through a conversion to the numerical representation, to 
the fact that a1=4. The same happens with point (2,6). This allowed the student to find the value of the difference of the 
arithmetic progression given in the task. Subsequently, the student used the formula that corresponded to the general 
term of an arithmetic progression to answer the different sections of the task. They obtained the sixth term correctly 
and answered that there was a term with a value of 16 and there was no term with a value of 13 (Figure 11). 

For section c), the student analysed the data to compare consecutive terms and interpreted the data to infer the 
behaviour of the terms that were not specified in the graphical-cartesian representation. 

For section d), the student continued in a similar way to the previous section, inferring the behaviour of the whole 
number sequence. 
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Translation: 

a) a2=6 a4=10 a6=14  

b) The seventh term is worth 16. There is no term that is worth 13 since the number sequence is of even terms. 

c) It is increasing, the first term is the smallest and the following terms are larger than the previous one. 

d) Increasing as “n” increases. 

Figure 11. Answer of student e92 to task 1 of the questionnaire 

In task 2, the student used the general term from the four task sections in the algebraic representation and carried out a 
conversion to a numerical representation in order to find the three first terms. The student also analysed the graphical 
representation (linear or cartesian) and made a subsequent comparison. For this student, the number sequences b) and 
c) coincided with their corresponding graphical-cartesian representations and section d) with its corresponding 
graphical-linear representation. Likewise, they did not pair the number sequence a) with any graphical representation 
nor the graphical-linear representation 4 with any algebraic representation (Figure 12). 

 

Translation: 

a) There is no graphical representation of this number sequence 

b) This number sequence is related to the graph 2 

c) This number sequence is related to the graph 1 

d) This number sequence is related to the graph 3 

Figure 12. Answer of student e92 to task 2 of the questionnaire 

In summary, student e92 correctly used the different representations, showing conversions between the graphical 
(linear and cartesian), numerical and algebraic representations. 

Discussion  

The use of different representations has been considered as a key element for characterising the understanding of 
mathematical concepts. This work examines the consideration and differentiation of two graphical representations that 
are related through conversion; graphical-linear and graphical-cartesian representations. Both representation types 
were characterised using two processes: reading and interpretation. On the one hand, reading is a process that we can 
consider punctual as it is linked to concrete points (particular terms from a number sequence, either to a single point or 
as a finite set of terms in the sequence). On the other hand, interpretation is an overall process in nature, that is, it is 
linked with the complete number sequence with its infinite terms. Our results show that the cartesian graphical 
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representation register presents greater difficulty than the linear graph because the former requires a double reading, 
one to coordinate the position with the value of the term of the numerical sequence, while the latter requires only one 
reading to coordinate the position with the value of the term of the numerical sequence. 

The results of this paper are in line with those of other studies that note the presence of representations and the 
relevance of the conversions between them for understanding the concept of number sequences (Biza et al., 2020; 
Cañadas, 2007; Djasuli et al., 2017; Przenioslo, 2006; Roh, 2008). Moreover, our study is in line with the results 
obtained by Biza et al. (2020). The most used strategy among the students in this study to solve the task involving 
different representations was, as can be seen in the results, the conversion to a numerical representation.  

Moreover, our results agree with Duval (2006, 2017) who considers that for a concept, each representation has some, 
but not all, of its own characteristics associated with it. In this way, conceptual understanding arises from the 
coordination of several different representations. Žakelj and Klančar (2022) show the importance of the use of 
representation registers, since they develop the cognition of mathematical concepts. The concept of number sequences 
in a graphical representation has different associated characteristics according to whether it is a graphical-linear or 
graphical-cartesian representation. In the former, there is no need to coordinate the position and the value of the term, 
and in the latter coordination is needed in all situations. We cannot consider that the student has conceptually 
understood the graphical representations of number sequences until they have carried out the coordination process. It 
is noteworthy that this work has shown that not all mathematical concepts make use of representations in the same 
way, as can be seen in the different uses of graphical-linear and graphical-cartesian representations.  

Conclusions 

The results obtained in this study allow for the consideration that differentiating between graphical-linear and 
graphical-cartesian representations can help to characterise progression in learning the concept of number sequences 
in a graphical representation. All students who correctly used the graphical-cartesian representation, also correctly 
used the graphical-linear representation, but not vice versa. Due to this, it can be concluded that learning number 
sequences using graphical representations takes place by first correctly using the graphic-linear representation and 
then moving on to correctly using the graphical representation in its two forms (graphical-linear and graphical-
cartesian). 

This work demonstrates that the two graphical representations of a sequence are not the same; a graphical-linear 
representation is shown in one dimension (real line) and requires different analysis skills to those needed for a 
graphical-cartesian representation, which is shown in two dimensions (cartesian plane). Due to this, conversions 
between the two types of representations are not always instinctive. To be better able to carry out conversions 
between the graphical representations, it is recommended that a conversion to a numerical representation is done. 

Recommendations 

Learning number sequences is a challenge for students in secondary education as it is one of the first mathematical 
concepts that they do not develop in a finite context, but rather, an infinite one. More specifically, this particular 
discrete infinite context (based on natural numbers, which is an infinite countable set) is the transition to mathematical 
analysis concepts in a non-discrete infinite context (continuous, non-countable set) that is based on real numbers. This 
study has focused on this concept, putting an emphasis on graphical representations. These types of studies are vital 
when designing teaching plans at these educational levels that aim to help students understand particular concepts.  

These ideas, as outlined in this study, may be useful for teaching when the teacher develops prospective learning plans 
(Simon, 1995). For the development of these plans, this work may provide information regarding the learning 
hypotheses of mathematical tasks relating to numerical sequences and can help in the design of such tasks. More 
specifically, and as we have shown, this study may be useful in the learning progression of the student regarding 
graphical representations of number sequences, moving from the correct use of graphical-linear representations to the 
correct use of both graphical-linear and graphical-cartesian representations. 

Limitations 

Given that this work has been carried out with compulsory secondary school students (14-16 years old), a future line of 
research is to carry out the research with students at pre-university or university levels and to investigate the use of 
the graphic representation register by these students. 
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