logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Research Article

Course Dropout Intention Scale: Development and Validation of a New Brief Measure in Academic College Context

Daniel E. Yupanqui-Lorenzo , Lizbeth Angela Jara-Osorio , Carlos Carbajal-León , Tomás Caycho-Rodríguez , Manuel Antonio Cardoza Sernaqué , Kerly Stefanny Duran Quispe

University students may encounter situations where they perform poorly in a course and contemplate dropping out. This intention to drop out of a cours.

U

University students may encounter situations where they perform poorly in a course and contemplate dropping out. This intention to drop out of a course manifests not only in thoughts or ideas but also in a cognitive self-evaluation of their performance and skills, enabling them to reflect on the possibility of dropping out. In this sense, there is a shortage of instruments that evaluate the intention to drop out of a course, so the aim was to develop and validate the Course Dropout Intention Scale (CDIS). Data from two samples (N1 = 198; N2 = 675) were used; the first was for the EFA, and the second was for the CFA, GRM, and SEM. The one-factor model was derived from the EFA and confirmed in the second sample, exhibiting appropriate goodness-of-fit indices. Similarly, the GRM obtained adequate fit indices; all items discriminated adequately, and the difficulty parameter had a monotonic increase. The SEM model of the effect of satisfaction with studies on the CDIS showed a negative and statistically significant effect. Thus, it was demonstrated that the CDIS is a robust instrument in its psychometric properties and empirical evidence with other variables.

Keywords: Brief measure, college student, course dropout, dropout intention, dropout studies.

cloud_download PDF
Cite
Article Metrics
Views
547
Download
1109
Citations
Crossref
0

Scopus
0

References

 Alves, S. A., Sinval, J., Neto, L. L., Marôco, J., Gonçalves Ferreira, A., & Oliveira, P. (2022). Burnout and dropout intention in medical students: The protective role of academic engagement. BMC Medical Education, 22, Article 83. https://doi.org/10.1186/s12909-021-03094-9

Aiken, L. R. (1980). Content validity and reliability of single items or questionnaires. Educational and Psychological Measurement, 40(4), 955–959. https://doi.org/10.1177/001316448004000419

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds)., Action control (pp. 11–39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2

Ajzen, I. (2005). Attitudes, personality, and behavior (2nd ed.). Open University Press.

Allen, J., & Robbins, S. B. (2008). Prediction of college major persistence based on vocational interests, academic preparation, and first-year academic performance. Research in Higher Education, 49, 62–79. https://doi.org/10.1007/s11162-007-9064-5

American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (Eds.). (2014). Standards for educational and psychological testing. AERA Publications Sales.

Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología [A classification system for research designs in psychology]. Anales de Psicología, 29(3), 1038–1059. https://doi.org/10.6018/analesps.29.3.178511

Bardach, L., Lüftenegger, M., Oczlon, S., Spiel, C., & Schober, B. (2020). Context-related problems and university students’ dropout intentions—the buffering effect of personal best goals. European Journal of Psychology of Education, 35, 477–493. https://doi.org/10.1007/s10212-019-00433-9

Beaujean, A. A. (2019). Sample size determination for regression models using Monte Carlo methods in R. Practical Assessment, Research, and Evaluation, 19, Article 12. https://doi.org/10.7275/d5pv-8v28

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258. https://doi.org/10.1177/0049124192021002005

Burisch, M. (1984). You don’t always get what you pay for: Measuring depression with short and simple versus long and sophisticated scales. Journal of Research in Personality, 18(1), 81–98. https://doi.org/10.1016/0092-6566(84)90040-0

Cai, L., Chung, S. W., & Lee, T. (2023). Incremental model fit assessment in the case of categorical data: Tucker–Lewis index for item response theory modeling. Prevention Science, 24, 455–466. https://doi.org/10.1007/s11121-021-01253-4

Cai, L., & Monroe, S. (2013). IRT model fit evaluation from theory to practice: Progress and some unanswered questions. Measurement: Interdisciplinary Research and Perspective, 11(3), 102–106. https://doi.org/10.1080/15366367.2013.835172

Choi, J., Fan, W., & Hancock, G. R. (2009). A note on confidence intervals for two-group latent mean effect size measures. Multivariate Behavioral Research, 44(3), 396–406. https://doi.org/10.1080/00273170902938902

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.  https://doi.org/10.4324/9780203771587

DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications (5th ed.). SAGE Publishing.

Díaz Mujica, A. E., Pérez Villalobos, M. V., Bernardo Gutiérrez, A. B., Fernández-Castañón, A. C., & González-Pienda, J. A. (2019). Affective and cognitive variables involved in structural prediction of university droput. Psicothema, 31(4), 429–436. https://doi.org/10.7334/psicothema2019.124

Dominguez-Lara, S. A. (2018). Propuesta de puntos de corte para cargas factoriales: Una perspectiva de fiabilidad de constructo [Proposal cut-offs for factor loadings: A construct reliability perspective]. Enfermería Clínica, 28(6), 401–402. https://doi.org/10.1016/j.enfcli.2018.06.002

Duque, L. C., Duque, J. C., & Suriñach, J. (2013). Learning outcomes and dropout intentions: an analytical model for spanish universities. Educational Studies, 39(3), 261–284. https://doi.org/10.1080/03055698.2012.724353

Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(S1), 5–18. https://doi.org/10.1007/s11136-007-9198-0

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum Associates Publishers.

Finney, S. J., & DiStefano, C. (2013). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 439–492). IAP Information Age Publishing.

Fishbein, M., & Ajzen, I. (2009). Predicting and changing behavior. Psychology Press. https://doi.org/10.4324/9780203838020

Gorsuch, R. L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68(3), 532–560. https://doi.org/10.1207/s15327752jpa6803_5

Hambleton, R. K., van der Linden, W. J., & Wells, C. S. (2010). IRT models for the analysis of polytomously scored data: brief and selected history of modelbuilding advances. In M. L. Nering & R. Ostini (Eds.), Handbook of polytomous item response models (pp. 21–42). Routledge.

Hom, P. W., Caranikas-Walker, F., Prussia, G. E., & Griffeth, R. W. (1992). A meta-analytical structural equations analysis of a model of employee turnover. Journal of Applied Psychology, 77(6), 890–909. https://doi.org/10.1037/0021-9010.77.6.890

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). The Guilford Press.

Litalien, D., & Guay, F. (2015). Dropout intentions in PhD studies: A comprehensive model based on interpersonal relationships and motivational resources. Contemporary Educational Psychology, 41, 218–231. https://doi.org/10.1016/j.cedpsych.2015.03.004

Marôco, J., Assunção, H., Harju-Luukkainen, H., Lin, S.-W., Sit, P.-S., Cheung, K.-C., Maloa, B., Ilic, I. S., Smith, T. J., & Campos, J. A. D. B. (2020). Predictors of academic efficacy and dropout intention in university students: Can engagement suppress burnout? PLOS ONE, 15(10), e0239816. https://doi.org/10.1371/journal.pone.0239816

Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling: A Multidisciplinary Journal, 11(3), 320–341. https://doi.org/10.1207/s15328007sem1103_2

Mashburn, A. J. (2000). A psychological process of college student dropout. Journal of College Student Retention: Research, Theory & Practice, 2(3), 173–190. https://doi.org/10.2190/U2QB-52J9-GHGP-6LEE

Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49(4), 305–328. https://doi.org/10.1080/00273171.2014.911075

McDonald, R. P. (1999). Test theory: A unified treatment. Taylor & Francis. https://doi.org/10.4324/9781410601087

Merino-Soto, C., Dominguez-Lara, S., & Fernández-Arata, M. (2017). Validación inicial de una Escala Breve de Satisfacción con los Estudios en estudiantes universitarios de Lima [Initial validation of a Brief Satisfaction with Studies Scale in university students in Lima]. Educación Médica, 18(1), 74–77. https://doi.org/10.1016/j.edumed.2016.06.016

Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., Kubiszyn, T. W., & Reed, G. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56(2), 128–165. https://doi.org/10.1037/0003-066X.56.2.128

Noman, M., Kaur, A., & Nafees, N. (2021). Covid-19 fallout: Interplay between stressors and support on academic functioning of Malaysian university students. Children and Youth Services Review, 125, 106001. https://doi.org/10.1016/j.childyouth.2021.106001

Raykov, T., & Hancock, G. R. (2005). Examining change in maximal reliability for multiple-component measuring instruments. British Journal of Mathematical and Statistical Psychology, 58(1), 65–82. https://doi.org/10.1348/000711005X38753

Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315

Rumberger, R. W. (2011). Dropping out. Harvard University Press. https://doi.org/10.4159/harvard.9780674063167

Ryan, R. M., & Deci, E. L. (2017). Self-determination Theory: Basic psychological needs in motivation, development, and wellness. Guilford Press. https://doi.org/10.1521/978.14625/28806

Samejima, F. (1997). Graded response model. In W. J. van der Linden & R. K. Hambleton (Eds). Handbook of modern item response theory (pp. 85–100). Springer. https://doi.org/10.1007/978-1-4757-2691-6_5

Samuel, R., & Burger, K. (2020). Negative life events, self-efficacy, and social support: Risk and protective factors for school dropout intentions and dropout. Journal of Educational Psychology, 112(5), 973–986. https://doi.org/10.1037/edu0000406

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/JOER.99.6.323-338

Schumacker, R. E., & Lomax, R. G. (2015). A beginner’s guide to structural equation modeling (4th ed.). Routledge. https://doi.org/10.4324/9781315749105

Tayebi, A., Gomez, J., & Delgado, C. (2021). Analysis on the lack of motivation and dropout in engineering students in spain. IEEE Access, 9, 66253–66265. https://doi.org/10.1109/ACCESS.2021.3076751

Tinto, V. (1994). Leaving college: Rethinking the causes and cures of student attrition (2nd ed.). University of Chicago Press. https://doi.org/10.7208/chicago/9780226922461.001.0001

United Nations Educational, Scientific and Cultural Organization. (2020). COVID-19 education response: How many students are at risk of not returning to school? Advocacy paper. https://unesdoc.unesco.org/ark:/48223/pf0000373992

Woodard, D. B., Mallory, S. L., & De Luca, A. M. (2001). Retention and institutional effort: A self-study framework. NASPA Journal, 39(1), 53–83. https://doi.org/10.2202/1949-6605.1159

Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200. https://doi.org/10.1111/0081-1750.00078

...