Household Possessions and Parental Support in Mexican Students with High Scientific Competencies in PISA 2015
Aldo Bazán-Ramírez , Iván Montes-Iturrizaga , William Castro-Paniagua
Traditionally secondary studies on achievement on Programme for International Students Assessment (PISA) tests point to the significant impact of soci.
- Pub. date: January 15, 2022
- Pages: 259-366
- 738 Downloads
- 1421 Views
- 5 Citations
Traditionally secondary studies on achievement on Programme for International Students Assessment (PISA) tests point to the significant impact of socioeconomic status and cultural backgrounds of families as well as the role of parental involvement, which in some cases has had a negative impact on achievement. For this article, a model of structural regression was tested, with structural modelling software. This model included the following factors: domestic and educational assets, parental support for students, parents’ perceptions about science, and science competencies among 214 high performing Mexican students on PISA tests in 2015. This resulted in a structural regression model with a goodness of fit, where science competencies were a positive significant variable, impacted by domestic and educational assets and parental involvement. An additional restricted model with four variables manifested as mediators, revealed that science competencies were predicted positively and significantly by domestic and educational assets, and by the manifest parental emotional support variable. Variables related to ownership of educational and cultural assets and resources, as well as parental support, particularly emotional parental support, have positive and significant impact on science competencies.
Keywords: Household assets, Mexican students, parents support, PISA 2015, scientific competencies.
References
Ababneh, E. G., & Abdel Samad, M. M. (2018). Gender gap in science achievement for Jordanian students in PISA 2015. European Journal of Educational Research, 7(4), 963-972. https://doi.org/10.12973/eu-jer.7.4.963
Ataş, D., & Karadağ, Ö. (2017). An analysis of Turkey’s PISA 2015 results using two-level hierarchical linear modelling. Journal of Language and Linguistic Studies, 13(2), 720-727. https://www.jlls.org/index.php/jlls/article/view/778
Bazán, A., Backhoff, E., & Turullols, R. (2016). School participation, family support, performance in mathematics: The case of Mexico in PISA (2012). e-Journal of Educational Research, Assessment and Evaluation, 22(1), 1-17. https://bit.ly/30lKWW9
Bazán, A., Castellanos, D., & Fajardo, V. (2020). Family variables, intellectual aptitudes, and Mexican estudents´ reading achievement. Electronic Journal of Research in Educational Psychology, 18(52), 375-398. https://bit.ly/2YHNyxg
Benner, A. D., Boyle, A. E., & Sadler, S. (2016). Parental involvement and adolescents’ educational success: the roles of prior achievement and socioeconomic status. Journal of Youth Adolescence, 45(6), 1053–1064. https://doi.org/10.1007/s10964-016-0431-4
Caponera, E., Di Chiacchio, C., Greco, S., & Palmerio, L. (2019). Can parents contribute to 15-years-old's science achievement? Journal of Supranational Policies of Education, 9, 156-176. http://doi.org/10.15366/jospoe2019.9.006
Castellanos-Simons, D., Bazán-Ramírez, A., Ferrari-Belmont, A. M., & Hernández-Rodríguez, C. A. (2015). Apoyo familiar en escolares de alta capacidad intelectual de diferentes contextos socioeducativos [Family support in high ability students from different socio-educational contexts]. Revista de Psicología, 33(2), 299-332. https://doi.org/10.18800/psico.201502.003
Chávez, B. I., & Acle, G. (2018). Children with high capacities: Analyses of the relatives’ variables involved in the development of the potential. Electronic Journal of Research in Educational Psychology, 16(45), 273-300. https://doi.org/10.25115/ejrep.v16i45.2094
Day, E., & Dotterer, A. M. (2018). Parental involvement and adolescent academic outcomes: Exploring differences in beneficial strategies across racial/ethnic groups. Journal of Youth and Adolescence, 47(6), 1332–1349. https://doi.org/10.1007/s10964-018-0853-2
Hartas, D. (2015). Patterns of parental involvement in selected OECD countries: Cross-national analyses of PISA. European Journal of Educational Research, 4(4), 185-195. https://doi.org/10.12973/eu-jer.4.4.185
Ho, E. S. C., & Lam, T. Y. P. (2016). Multilevel analyses of families influence on adolescents literacy performances. International Journal Quantitative Research in Education, 3(1/2), 58-78. https://doi.org/10.1504/IJQRE.2016.073667
Klieme, E., & Stanat, P. (2009). El valor informativo de los estudios internacionales comparados de rendimiento escolar: datos y primeros intentos de interpretación sobre la base del estudio PISA [The informative value of the international comparative studies of school achievement: information and first attempts of interpretation on the base of PISA study]. Teacher Training. Profesorado. Revista de Currículum y Formación del Profesorado, 13(22), 1-16. https://www.redalyc.org/articulo.oa?id=56711798007
Kotte, D., Lietz, P., & Martínez, M. (2005). Factors Influencing Reading Achievement in Germany and Spain: Evidence from PISA 2000. International Education Journal, 6(1), 113-124. https://bit.ly/3qABJV1
List, M. K., Schmidt, F. T., Mundt, D., & Föste-Eggers, D. (2020). Still green at fifteen? investigating environmental awareness of the PISA 2015 population: Cross-national differences and correlates. Sustainability, 12(7), 2985. https://doi.org/10.3390/su12072985
Muelle, L. (2019). Socioeconomic and contextual factors associated with low academic performance of Peruvian students in PISA 2015. Apuntes. Revista en Ciencias Sociales, 47(86), 111-146. https://doi.org/10.21678/apuntes.86.943
National Institute for the Evaluation of Education [Instituto Nacional para la Evaluación de la Educación]. (2017). México en Pisa 2015 [Mexico in PISA 2015]. https://bit.ly/3n7TLMl
Organization for Economic Co-operation and Development. (2013). PISA 2012. Assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. http://doi.org/10.1787/9789264190511-en
Organization for Economic Co-operation and Development. (2016). PISA 2015. Results (Volume I): Excellence and Equity in Education. http://doi.org/10.1787/9789264266490-en
Organization for Economic Co-operation and Development. (2017a). PISA 2015. Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving. http://doi.org/10.1787/9789264281820-en
Organization for Economic Co-operation and Development. (2017b). PISA 2015 Technical Report. https://bit.ly/3HgVKG9
Öztürk, Ö. (2018). Using PISA 2015 data to analyze how the scientific literacy of students from different socioeconomic levels can be predicted by environmental awareness and by environmental optimism [Master's thesis, Bilkent University]. Bilkent University Institutional Repository. http://repository.bilkent.edu.tr/handle/11693/47581
Palomar, J., Montes de Oca, S., Polo, M., & Victorio, A. (2016). Explanatory factors of academic performance in children of Mexican immigrants in New York [Factores explicativos del rendimiento académico en hijos de inmigrantes mexicanos en Nueva York]. Psicología Educativa, 22(2), 125-133. https://doi.org/10.1016/j.pse.2016.03.001
Poon, K. (2020). The impact of socioeconomic status on parental factors in promoting academic achievement in Chinese children. International Journal of Educational Development, 75, 102175. https://doi.org/10.1016/j.ijedudev.2020.102175
Quiroz, S. S., Dari, N. L., & Cervini, R. A. (2020). Oportunidad de Aprender y Segmentación Socioeconómica en Argentina - PISA 2015 [Opportunity to learn and socioeconomic segmentation in Argentina - PISA 2015]. REICE. Ibero-American Journal on Quality, Effectiveness and Change in Education/ REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 18(3), 93–112. https://doi.org/10.15366/reice2020.18.3.005
Raykov, T., & Marcoulides, G. (2000). A first course in structural equation modeling. Lawrence Erlbaum.
Rodríguez, C. M., & González, M. A. (2018). Una mirada al logro educativo mexicano en lenguaje, matemáticas y ciencias [An overview of Mexican educational achievements in language, mathematics and science]. Entreciencias. Diálogos en la Sociedad del Conocimiento, 6(17), 51-64. http://doi.org/10.22201/enesl.20078064e.2018.17.63257
Rodríguez, E., Cadenas, M., Borges, Á., & Valadez, D. (2019). Educational responses to students with high abilities from the parental perspective. Frontiers in Psychology, 10, 1187. https://doi.org/10.3389/fpsyg.2019.01187
Sayans-Jiménez, P., Vázquez-Cano, E., & Bernal-Bravo, C. (2018). Influence of family wealth on student reading performance in PISA [Influencia de la riqueza familiar en el rendimiento lector del alumnado en PISA]. Revista de Educación, 380, 129-155. https://doi.org/10.4438/1988-592X-RE-2017-380-375
Susongko, P., & Afrizal, T. (2018). The determinant factors analysis of indonesian students’ environmental awareness in PISA 2015. Indonesian Science Education Journal/ Journal Pendidikan IPA Indonesia, 7(4), 407-419. https://doi.org/10.15294/jpii.v7i4.10684
Tan, C. Y. (2019). Involvement practices, socioeconomic status, and student science achievement: insights from a typology of home and school involvement patterns. American Educational Research Journal, 56(3), 899-924. http://doi.org/10.3102/0002831218807146
Tourón, J., López, E., Lizasoain, L., García, M. J., & Navarro, E. (2018). Alumnado español de alto y bajo rendimiento en ciencias en PISA 2015: análisis del impacto de algunas variables de contexto [Spanish high and low achievers in science in PISA 2015: Impact analysis of some contextual variables]. Revista de Educación, 380, 156-184. https://doi.org/10.4438/1988-592X-RE-2017-380-376
Yang, X. (2017). Education equity in Swedish compulsory school: Effects of student background, personal and school characteristics on their academic achievement in PISA 2015 [Master’s thesis, Göteborgs Universitet]. Gothenburg University Library. http://hdl.handle.net/2077/53416