Measurement of Metacognition: Adaptation of Metacognitive State Inventory in Spanish to Mexican University Students
Luz Marina Mendez-Hinojosa , Magaly Cardenas-Rodriguez , Cesar Alejandro Ortiz-Paez
Some of the most important skills of university students is to develop the capacity to resolve problems posed by their communities, which implies that.
- Pub. date: January 15, 2020
- Pages: 413-421
- 443 Downloads
- 1077 Views
- 3 Citations
Some of the most important skills of university students is to develop the capacity to resolve problems posed by their communities, which implies that students become independent, autonomous and self-regulated. Also they need to be capable of monitor, asses and modify their learning through their own process of metacognition, this way they can develop the required knowledge and improve their learning. To analyze it, the objective of this research is to evaluate the psychometric properties of the Metacognitive State Inventory in Mexican university students. For this reason, the Metacognitive State Inventory was applied to 908 students. To confirm a second order hierarchy model with four first order factors, confirmatory factor analysis was used (CFA).Four items were eliminated to obtain a better model fit. Internal consistency was accessed through McDonald's omega coefficient. In this way, evidence of the construct validity and reliability of the instrument was provided. The Inventory of the Metacognitive State was correlated with the CEVEAPEU Questionnaire, obtaining significant positive correlations between both instruments, thus providing certainty of convergent validity.
Keywords: Metacognition, self-regulation, metacognitive state inventory, inventory.
References
Colthorpe, K., Sharifirad, T., Ainscough, L., Anderson, S., & Zimbardi, K. (2018). Prompting undergraduate students’ metacognition of learning: implementing ‘meta-learning’ assessment tasks in the biomedical sciences. Assesment and Evaluation in Higher Education, 43(2), 272-285. doi: 10.1080/02602938.2017.1334872
DeVellis, R. F. (2003). Scale development: Theory and applications. Thousand Oaks, CA: Sage Publications doi: 10.1080/02602938.2017.1334872
Dinsmore, D. L., Alexander, P. A., & Loughlin, S. M. (2008). Focusing the conceptual lens on metacognition, self-regulation, and self-regulated learning. Educational Psychology Review, 20(4), 391-401. doi: 10.1007/s10648-008-9083-6.
Elousa, M. R., & Garcia, E. (1993). Estrategias para ensenar y aprender a pensar [Strategies to teach and learn to think]. Madrid, Spain: Narcea Ediciones.
Flavell, J. H. (1981). Metacognition and cognitive monitoring: A new area of cognitive developmental Inquiry. In H., Parke (Ed.), Contemporary Readings in Child Psychology (pp. 906-911). New York, NY: McGraw Hill.
Flavell, J. H. (1985). Cognitive development. New York, NY: Prentice-Hall.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
Gargallo, B., Suarez-Rodriguez, J. M., & Perez-Perez, C. (2009). El cuestionario CEVEAPEU. Un instrumento para la evaluacion de las estrategias de aprendizaje de los estudiantes universitarios [The CEVEAPEU questionnaire. An instrument for the evaluation of the learning strategies of university students]. Relieve, 15(2), 1-31.
Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19(2) 149-161.
Favieri, A. G. (2013). General Metacognitive Strategies Inventory (GMSI) and the Metacognitiva Integrals Strategies Inventory (MISI) Electronic Journal of Research in Educational Psychology 11(3), 831-850. doi: 1014204/ejrep.31.13067
Hair, J., Anderson, R., Tatham, R., & Black, W. (1999). Analisis multivariante [Multivariate analysis] (4th ed). Madrid, Spain: Prentice Hall.
Hancock, G. R., & Mueller, R. O. (2001). Rethinking construct reliability within latent variable systems. In R. Cudeck, S. du Toit, & D. Sorbom (Eds.), Structural Equation Modeling: Present and Future (pp. 195 216). Lincolnwood, IL: Scientific Software International.
Harrison, G. M., & Vallin, L. M. (2017). Evaluating the metacognitive awareness inventory using empirical factor-structure evidence. Metacognition and Learning, 13(1), 15-38. doi: 10.1007/s11409-017-9176-z
Hernandez Rojas, G., & Diaz Barriga, F. (2013). Una mirada psicoeducativa al aprendizaje: Que sabemos y hacia donde vamos [A psychoeducational look at learning: What we know and where we are going]. Electronic Synectical Journal /Revista Electronica Sinectica, 40, 1-19.
Hu, L., & Bentler, P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi: 10.1080/10705519909540118
Jaramillo, S., & Osses, S. (2012). Validacion de un instrumento sobre metacognicion para estudiantes de segundo ciclo de educacion general basica [Validation of an instrument on metacognition for second cycle general basic school pupils]. Pedagogical Studies /Estudios Pedagogicos, 38(2), 117-131.
Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational & Psychological Measurement, 20(1), 141-151.
Kayacan, K., & Sonmez Ektem, I. (2019). The effects of biology laboratory practices supported with self-regulated learning strategies on students' self-directed learning readiness and their attitudes towards science experiments. European Journal of Educational Research, 8(1), 313-299. doi: 10.12973/eu-jer.8.1.313
Khan, S. (2012). The one world schoolhouse: Education reimagined. New York, NY: Twelve.
Kline, R. B. (2015). Principles and practice of structural equation modeling methodology in the social sciences (4th ed.). New York, NY: The Guilford Press
Lloret-Segura, S., Ferreres-Traver, A., Hernandez-Baeza, A., & Tomas-Marco, I. (2014). Exploratory Item Factor Analysis: A practical guide revised and up-dated. Annals of Psychology/Anales De Psicologia, 30(3), 1151-1169. doi: 10.6018/analesps.30.3.199361
Merino-Soto, C., Dominguez-Lara, S., & Fernandez-Arata, M. (2017). Validacion inicial de una Escala Breve de Satisfaccion con los Estudios en estudiantes universitarios de Lima [Initial validation of a Brief Satisfaction Scale with Studies in university students of Lima]. Medical Education/Educacion Medica, 18(1), 74-77. doi:10.1016/j.edumed.2016.06.016
Monereo, C., & Pozo, J. (2001). ¿En que siglo vive la escuela? El reto de la nueva cultura educativa [What century does the school live in? The challenge of the new educational culture]. Pedagogy notebooks/ Cuadernos de Pedagogia, 298, 50-56.
McDonald, R. P. (1999). Test theory: A unified treatment. Hillsdale, MI: Erlbaum.
Montero, I. & Leon, O. (2005). Sistemas de clasificacion del metodo en los informes de investigacion en Psicologia [Method classification systems in research reports in Psychology]. International Journal of Clinical and Health Psychology 5(1), 115-127.
O´Neil, H., & J. Abedi. (1996). Reliability and Validity of a State Metacognitive Inventory: Potential for Alternative Assessment. Los Angeles, CA: National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
Ozen Uyar, R., Yilmaz Genc, M. M., & Yasar, M. (2018). The relationship between resilience and constant hope in students studying sports science. European Journal of Educational Research, 7(3), 601-613. doi: 10.12973/eu-jer.7.3.601
Panadero, E., & Alonso-Tapia, J. (2014). ¿Como se autorregulan nuestros alumnos? Revision del modelo ciclico de Zimmerman sobre autorregulacion del aprendizaje [How do our students self-regulate? Review of Zimmerman's cyclical model on self-regulation of learning]. Annals of Psychology/ Anales de Psicologia, 30(2), 450-462.
Rosario, P., Lourenco, A., Paiva, O., Valle, A., & Tuero-Herrero, E. (2012). Prediccion del rendimiento en matemáticas: efecto de variables personales, socioeducativas y del contexto escolar [Prediction of performance in mathematics: effect of personal, socio-educational and school context variables]. Psicothema, 24(2), 289-295.
Rosario, P., Pereira, A., Hogemann, J., Nunes, A. R., Figueiredo, M. Nunez, J.C., ... & Gaeta, M.L. (2014). Autorregulacion del aprendizaje: una revision sistematica en revistas de la Base Scielo. [Self-regulation of learning: a systematic review in magazines of the Base Scielo]. Psychologica University/Universitas Psychologica, 13(2), 781-798. doi:10.11144/Javeriana.UPSY13-2.aars
Suhr, D. (2006). Exploratory or confirmatory factor analysis. In Proceedings from the SAS users group international conference (pp. 200-231). Cary, CA: SAS Institute, Inc.
Weiert, F. E., & Kluwe, R. H. (Eds.) (1987). Metacognition, motivation and understanding. Hillsdale, MI: LEA.
Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Journal of Emergency Primary Health Care (JEPHC), 8(3), 1-13.
Whitebread, D., & Pino Pasternak, D. (2010). Metacognition, self-regulation and meta-knowing. In K. Littleton, C. Wood & J. Kleine Staarman (Eds.), International Handbook of Psychology in Education, pp. 673-711. Bingley, UK: Emerald.
Zimmerman, B. J. (1986). Becoming of self-regulated learning: Which are the key subprocesses? Contemporary Educational Psychology, 11(4), 307-313. doi: 10.1016/0361-476X(86)90027-5
Zimmerman, B. J. (1989). Models of self-regulated learning and academic achievement. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: theory, research, and practice (pp. 1 -25). New York, NY: Springer.