'teaching model' Search Results
Meta-Analysis of Integrated Learning on 21st Century Skills: Is Integrated Learning Still Relevant?
21st century creativity critical thinking integrated learning...
Integrated learning has emerged as an approach to developing critical thinking and creativity skills. This meta-analysis synthesizes the effects of integrated learning on critical thinking and creativity, drawing from experimental studies published over the past decade. This study addresses the research question: What are the impacts and factors influencing integrated learning on students' critical thinking skills and creativity compared to conventional learning over the past decade? In the database, 403 articles were obtained, which were then supplemented by seven articles from manual searches, so that there were a total of 410 articles. After a strict inclusion process, 8 articles were selected for analysis. The inter-rater reliability test using Cohen's Kappa coefficient produced a value of 0.78, which indicates a substantial level of agreement. The analysis includes data from 497 participants for critical thinking and 266 for creativity. Heterogeneity in critical thinking skill data was 96%, and in creative skills, it was 86%; then, a subgroup analysis of education level was carried out to find out where the high heterogeneity was. The results show a significant positive effect of integrated learning, with an SMD of 1.48 (p = .004) for critical thinking and 1.60 (p = .0001) for creativity. Funnel plots and Egger's regression tests indicate no risk of publication bias. In addition, this study also synthesized the causal factors of how integrated learning affects critical thinking skills and creativity. Further research is recommended to explore its long-term impact and implementation strategies in various educational settings.
Promoting Mathematics Problem-Solving Ability in Gamification Integration Using Augmented Reality
augmented reality gamification problems-solving...
The use of technology in education aims to improve students' problem-solving skills so that they have the skills needed by 21st century society in dealing with various kinds of challenges and problems. This study was carried out aiming to obtain the characteristics of augmented reality-based learning media for mathematics learning in student problem-solving skill, and obtain the results of the average difference in the problem-solving abilities of junior high school students. This research and development (R&D) study, employing the (Analyze, Design, Develop, Implement, and Evaluate) ADDIE model, investigated Augmented Reality (AR)-based learning media for mathematics to enhance junior high school students' problem-solving skills. The aim was to identify characteristics of effective AR media and assess their impact on problem-solving abilities. Quantitative data, collected from student problem-solving tests, were analyzed using a t-test in SPSS. The AR media featured virtual manipulation, virtual measurement tools, and real-world problem exploration. While the experimental group using AR showed a higher average problem-solving score compared to the control group using Problem-Based Learning (PBL), the difference was not statistically significant (t (df) = 0.638, Cohen's d = 0.0876). This lack of significance, despite the higher mean, is likely due to a small sample size and the limited integration timeframe, coupled with pre-existing skill variations. Future research should address these limitations to further explore the potential of AR in mathematics education.
Integrating Artificial Intelligence Into English Language Teaching: A Systematic Review
artificial intelligence english language teaching systematic review...
This research aims to systematically review the integration of artificial intelligence (AI) in English language teaching and learning. It specifically seeks to analyze the current literature to identify how AI could be utilized in English language classrooms, the specific tools and pedagogical approaches employed, and the challenges faced by educators. Using the PRISMA-guided Systematic Literature Review (SLR) methodology, articles were selected from Scopus, Science Direct, and ERIC, and then analyzed thematically with NVivo software. Findings reveal that AI enhances English teaching through tools like grammar checkers, chatbots, and language learning apps, with writing assistance being the most common application (54.55% of studies). Despite its benefits, challenges such as academic dishonesty, over-reliance on AI (27.27% of studies), linguistic issues, and technical problems remain significant. The study emphasizes the need for ethical considerations and teacher training to maximize AI’s potential. It also highlights societal concerns, including the digital divide, underscoring the importance of equitable access to AI-powered education for learners of all socioeconomic backgrounds.
Effect of STEAM Project-Based Learning on Engineering Students’ 21st Century Skills
steam steam education steam project-based learning 21st century skills...
STEM/STEAM education is an interdisciplinary pedagogical approach that cultivates skills in science (S), technology (T), engineering (E), arts (A), and mathematics (M) while also fostering 21st century skills like teamwork, problem-solving, critical thinking, and creativity in learners. Enhancing STEAM and 21st century skills for engineering students facilitates their swift adaptation to STEM/STEAM employment demands in the 4.0 industrial revolution and the ongoing digital transformation in Vietnam. This study aims to investigate the effect of STEAM project-based learning on the 21st century skills of 47 mechanical engineering technology students at a public university in Vietnam. The findings of a one-group pretest-posttest design and an analysis of engineering student groups’ STEAM project-based learning products revealed that there was a significant improvement in students' 21st century skills at a 95% confidence level. Among the three 21st century skills studied, engineering students’ collaboration skill showed a moderate effect size, while problem-solving and creative thinking skills demonstrated a large effect size after implementing STEAM project-based learning in the “Workplace Skills” course. Some significant limitations were identified, including (a) the lack of a comparison group, which may have influenced the difference between the pretest and posttest; and (b) the sustainability of 21st century skills developed through STEAM project-based learning in the “Workplace Skills” course was not investigated. Therefore, studying the effect of other factors on engineering students’ 21st century skills and exploring their sustainability were main recommendations for further research.
A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education
augmented reality bibliometric collaboration mathematical education scopus database...
This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
The Role of Home Literacy Environments in Mitigating Educational Disruptions: A Bibliometric Analysis
engagement home literacy learning losses parental involvement reading ability...
The COVID-19 pandemic has significantly changed the global educational landscape, prompting a need to explore emerging literature on home learning, literacy development, and parental involvement. This study aims to contribute to Sustainable Development Goals (SDG) 4: Quality Education, and SDG 10: Reduced Inequalities, by examining these aspects in the context of the pandemic and beyond through a bibliometric analysis. The analysis depicts 416 publications from the Web of Science Database between 2014–2023. The study utilized co-citation and co-word analysis techniques to identify key research clusters and trends related to home learning and literacy development. The analysis revealed that parental involvement can help mitigate learning loss, supporting SDG targets for equitable and inclusive education. Key research clusters identified include the influence of socio-economic status on literacy outcomes, continuity of literacy practices, and the long-term effects of traditional versus digital home learning environments. The findings highlighted a consensus on the importance of a supportive home literacy environment for reading skills and overall academic success. The need for intervention programs targeting low-income groups to ensure equitable access to learning resources, aligning with SDG 10, was also identified through the study. The findings have practical implications for enhancing the home literacy environment, increasing parental involvement, and supporting early literacy interventions, providing valuable insights for education stakeholders, policymakers, and researchers in the post-pandemic era.
A Meta-analysis of the Effectiveness of Problem-based Learning on Critical Thinking
critical thinking effectiveness meta-analysis problem-based learning...
Critical thinking is highly valued as an integral skill for promoting students’ development, and problem-based learning (PBL) is widely used as an essential method to facilitate the development of critical thinking. However, since individual studies cannot determine the precise overall effect size of PBL on the development of critical thinking, it is difficult to systematically analyze the various influencing factors that hinder PBL from achieving sufficient effectiveness. Therefore, this study adopts a meta-analysis method to examine PBL in depth, aiming to clarify the crucial methods and elements of applying PBL to enhance critical thinking and address the shortcomings of existing studies. This study investigates two primary questions: first, the efficacy of PBL in enhancing critical thinking skills in comparison to traditional pedagogical approaches, and second, the influence of moderating variables on the effectiveness of PBL. To address these questions, a total of 25 studies were selected for meta-analysis. The findings revealed an overall effect size of 1.081 under the random-effects model, with a confidence interval of [0.874, 1.288] and p < .05, indicating that PBL significantly outperforms traditional methods. The analysis demonstrated that the effectiveness of PBL is not significantly influenced by learning stage, sample size, or measurement tools, thereby broadening the applicability of PBL and challenging preconceived limitations associated with its implementation. However, the results also indicated that PBL effectiveness is moderated by teaching methods and subject types, which offers critical insights for educators seeking to adapt their instructional strategies when employing PBL.
Synergy of Voluntary GenAI Adoption in Flexible Learning Environments: Exploring Facets of Student-Teacher Interaction Through Structural Equation Modeling
flexible learning environments generative artificial intelligence adoption structural equation modeling student-teacher interaction technology acceptance...
Integrating generative artificial intelligence (GenAI) in education has gained significant attention, particularly in flexible learning environments (FLE). This study investigates how students’ voluntary adoption of GenAI influences their perceived usefulness (PU), perceived ease of use (PEU), learning engagement (LE), and student-teacher interaction (STI). This study employed a structural equation modeling (SEM) approach, using data from 480 students across multiple academic levels. The findings confirm that voluntary GenAI adoption significantly enhances PU and PEU, reinforcing established technology acceptance models (TAM). However, PU did not directly impact LE at the latent level—an unexpected finding that underscores students’ engagement’s complex and multidimensional nature in AI-enriched settings. Conversely, PEU positively influenced LE, which in turn significantly predicted STI. These findings suggest that usability, rather than perceived utility alone, drives deeper engagement and interaction in autonomous learning contexts. This research advances existing knowledge of GenAI adoption by proposing a structural model that integrates voluntary use, learner engagement, and teacher presence. Future research should incorporate variables such as digital literacy, self-regulation, and trust and apply longitudinal approaches to better understand the evolving role of GenAI inequitable, human-centered education.
Intermediality in Student Writing: A Preliminary Study on The Supportive Potential of Generative Artificial Intelligence
artificial intelligence automated writing evaluation chatgpt intermedia transmedia...
The proliferating field of writing education increasingly intersects with technological innovations, particularly generative artificial intelligence (GenAI) resources. Despite extensive research on automated writing evaluation systems, no empirical investigation has been reported so far on GenAI’s potential in cultivating intermedial writing skills within first language contexts. The present study explored the impact of ChatGPT as a writing assistant on university literature students’ intermedial writing proficiency. Employing a quasi-experimental design with a non-equivalent control group, researchers examined 52 undergraduate students’ essay writings over a 12-week intervention. Participants in the treatment group harnessed the conversational agent for iterative essay refinement, while the reference group followed traditional writing processes. Utilizing a comprehensive four-dimensional assessment rubric, researchers analyzed essays in terms of relevance, integration, specificity, and balance of intermedial references. Quantitative analyses revealed significant improvements in the AI-assisted group, particularly in relevance and insight facets. The findings add to the research on technology-empowered writing learning.
Interdisciplinary Mathematics Education: A Systematic Review
interdisciplinary approach interdisciplinary research mathematics education stem education systematic review...
Research in mathematics education and interdisciplinarity is varied and extensive, covering multiple approaches that reflect a growing interest in this type of perspective. The objective of this study is to systematize the findings of research on interdisciplinary mathematics education published between 2019 and 2024. The review was carried out following the guidelines of the PRISMA statement, allowing us to identify 49 articles published in journals indexed in the Web of Science (WOS) and Scopus databases. Subsequently, a content analysis was carried out to identify methodological and theoretical aspects present in the studies reviewed, such as methodology employed, education level of participants, disciplines integrated with mathematics, and types of interdisciplinary tasks proposed. Additionally, four main research themes were identified: (a) understanding of interdisciplinarity; (b) pedagogical strategies for interdisciplinary development in mathematics education; (c) interdisciplinarity for the development of mathematical skills; and (d) professional development of mathematics teachers. The results reveal a sustained increase in the number of publications, which reflects a growing interest in the interdisciplinary approach in mathematics education. Finally, several challenges and opportunities are highlighted for future research, including the need to develop an interdisciplinary teacher training model, the creation of pedagogical strategies that promote greater interconnection between disciplines, and the need to carry out more studies focused on early childhood and primary education in this area.
The Role of Basic Psychological Needs and Empathy on Prosocial Behavior in Emerging Adulthood
affective empathy autonomy cognitive empathy competence prosocial behavior relatedness...
The present study examined how empathy (affective and cognitive), basic psychological need satisfaction (autonomy, competence, and relatedness), and demographic factors (gender and academic achievement) jointly predict prosocial behavior during emerging adulthood. Grounded in Self-Determination Theory, this research explored whether relatedness need satisfaction mediates the relationship between empathy and prosocial tendencies. A total of N=889 undergraduate students from a large public university in the southeastern United States completed self-report measures assessing empathy, psychological needs, and prosocial behavior. Path analysis revealed that affective empathy and relatedness satisfaction were significant predictors of prosocial behavior. Relatedness also partially mediated the link between empathy and helping actions. Furthermore, gender and GPA contributed to prosocial outcomes, with female students and those with higher academic achievement reporting greater prosocial tendencies. These findings suggest that fostering emotional engagement and supporting students’ psychological needs—particularly the need for relatedness—may be key mechanisms for promoting prosocial development in educational settings during the critical stage of emerging adulthood.
Tracing the Evolution of Autism Mathematics Learning: A Bibliometric Analysis
autism spectrum disorder (asd) bibliometric analysis content analysis mathematics learning...
This study presents a comprehensive bibliometric and content analysis of research on autism and mathematics learning from 2010 to 2024. A total of 131 peer-reviewed articles were retrieved from the Web of Science (WoS) database using keywords such as autism, mathematics, learning, and intervention. Bibliometric analysis was conducted to quantitatively examine publication trends, leading authors, contributing countries, and co-authorship networks, offering a macroscopic overview of the field’s evolution. Visualisations generated using VOSviewer further illustrated keyword co-occurrence and thematic clustering. Complementing this, content analysis provided a qualitative synthesis of research themes and conceptual progressions across the literature. The findings revealed a clear thematic evolution. Early research (2010–2015) predominantly focused on behavioural interventions, structured instructional approaches, and basic numeracy development. Mid-phase studies (2016–2020) introduced inclusive pedagogies, social-emotional considerations, and differentiated instruction. Recent research (2021–2024) has shifted towards personalised, technology-enhanced instruction, Universal Design for Learning (UDL), and the integration of digital tools in mathematics education. Despite this growth, several gaps remain. Research remains limited in addressing cross-cultural diversity, long-term evaluations of digital interventions, and the adaptation of pedagogies in underrepresented regions. This study emphasises the need for future research to explore culturally responsive frameworks, the sustainability of technology uses, and equity in mathematics education for autistic learners.
Building a Competency Framework for Teaching Natural Science Under the Blended Learning Model for University Education Students: A Delphi Study
blended learning competency framework delphi method natural science education teacher training...
This study aims to develop a competency framework for teaching natural science under the blended learning (BL) model for Natural Science education students at Thai Nguyen University of Education. Recognizing the increasing importance of BL in the context of modern education and the challenges teachers face during implementation, the modified Delphi method was employed to collect expert opinions, involving three rounds of surveys with 50 participants, including university lecturers and secondary school educational administrators. The research identifies seven core competency groups, including specialized knowledge, lesson design and evaluation competencies, classroom organization and management, student assessment and feedback, information technology competencies, experiment and simulation utilization in teaching, and basic knowledge of BL. The findings highlight the necessity of blending traditional teaching methods with modern technology to effectively implement the BL model, enhancing both the teaching process and students' learning outcomes. This framework is expected to serve as a crucial basis for teacher training universities to adjust their curricula and support educational administrators in fostering and enhancing the capacity of natural science teachers at the secondary level. This competency framework aims to support the professional development of Natural Science teachers and education students, ensuring their preparedness for the evolving demands of modern education. Furthermore, the study provides insights into the skills and knowledge that teachers need to acquire to adapt to the continuously evolving educational environment.