' knowledge representation' Search Results
Optimization of Critical Thinking by Empowering Collaboration and Communication Skills through Information Literacy-Based E-Books: In STEM integrated Problem-Based Learning
critical thinking collaboration communication information literacy stem...
This study aimed to optimize critical thinking by empowering reflective and impulsive students' collaboration, communication, and information literacy skills through information literacy-oriented e-books in STEM-integrated problem-based learning (PBL). The research method used was a descriptive explorative approach. The study subjects consisted of five reflective students and five impulsive students. The measurement of cognitive style used the Matching Familiar Figure Test (MFFT) instrument. Collaboration skills were assessed through observation sheets, critical thinking and communication skills were assessed through student worksheets based on problem-solving tasks, and information literacy was assessed through a questionnaire. The study found that reflective students excelled in critical thinking and information literacy, while impulsive students demonstrated superior collaboration skills. As for communication skills, reflective and impulsive students have different advantages for each indicator of communication skills. This study can conclude that implementing information literacy-oriented e-books through STEM-integrated PBL can optimize reflective and impulsive students' critical thinking, collaboration, communication, and information literacy skills. The implication of this study is the importance of integrating 21st century skills holistically in learning practices, especially in the digital era, to prepare the younger generation to face the challenges of the 21st century.
Matter and Proportionality in the Learning Garden with Pre-Service Teachers
initial training mathematics education natural sciences open-air school primary education...
: In this study, we present a didactic experience carried out in a public university with 60 students enrolled in the 2nd year of the Primary Education Teaching Degree. This experience consisted of implementing a teaching and learning sequence in which proportionality problems (mathematics content) and pure substances and mixtures (experimental science content) were addressed together in an ecodidactic garden context. This work presents the results obtained through the analysis of the students' responses. Our findings suggest that pre-service teachers have difficulties similar to those of primary and secondary students in the use of measuring instruments and conversion units, as well as in the calculation of proportions in mathematics and conceptual errors at a microscopic and macroscopic level in experimental sciences. This study highlights the need to design and implement strategies to support students in their formative process in relation to the contents of proportion and matter. As an added value in our work, we emphasize the interdisciplinary connection between mathematics and experimental sciences, offering a more real-life perspective of science.