'Error analysis' Search Results
Learning to Teach AI: Design and Validation of a Questionnaire on Artificial Intelligence Training for Teachers
artificial intelligence continuous training professional recycling ict training courses...
This study aims to design, produce, and validate an information collection instrument to evaluate the opinions of teachers at non-university educational levels on the quality of training in artificial intelligence (AI) applied to education. The questionnaire was structured around five key dimensions: (a) knowledge and previous experience in AI, (b) perception of the benefits and applications of AI in education, (c) AI training, and (d) expectations of the courses and (e) impact on teaching practice. Validation was performed through expert judgment, which ensured the internal validity and reliability of the instrument. Statistical analyses, which included measures of central tendency, dispersion, and internal consistency, yielded a Cronbach's alpha of .953, indicating excellent reliability. The findings reveal a generally positive attitude towards AI in education, emphasizing its potential to personalize learning and improve academic outcomes. However, significant variability in teachers' training experiences underscores the need for more standardized training programs. The validated questionnaire emerges as a reliable tool for future research on teachers' perceptions of AI in educational contexts. From a practical perspective, the validated questionnaire provides a structured framework for assessing teacher training programs in AI, offering valuable insights for improving educational policies and program design. It enables a deeper exploration of educational AI, a field still in its early stages of research and implementation. This tool supports the development of targeted training initiatives, fostering more effective integration of AI into educational practices.
Validity of Measurement and Causal Model of Online Scam Protection Behavior Among Risk Thai Students
causal model confirmatory factor analysis high school student online scam protection behavior...
This research investigated the validity of measurement and causal model of online scam protection behavior (OSPB) among at risk Thai students. The sample comprised 286 high school students from three demonstration schools under the University. Data were analyzed using descriptive statistics, confirmatory factor analysis (CFA), and structural equation modeling (SEM). The factor loadings for all items satisfied the standard criteria with scores ranging from .40 to .80, item-total correlations ranging from .405 to .718, and Cronbach’s alpha coefficients ranging from .773 to .928. The modified model demonstrated a better fit with the empirical data (χ² = 47.62, df = 37, p = .113, χ²/df = 1.287, RMSEA = .032, SRMR = .028, GFI = .97, CFI = 1.00, NFI = .99). All factors: a) awareness of online risks, b) inhibitory control, c) game-based learning, d) social support, and e) motivation to prevent online scams can predict 81% of OSPB. The motivation to prevent online scams strongly influenced OSPB, with an effect size of .60. Additionally, all factors can predict 88% of the motivation for online scam prevention, suggesting that Protection Motivation Theory (PMT) is a suitable framework for understanding and evaluating Thai students' preventive behaviors in online deception scenarios. This newly developed instrument is highly reliable and can be effectively used by researchers and educators to assess the risk of online fraud victimization among high school students.
Synergy of Voluntary GenAI Adoption in Flexible Learning Environments: Exploring Facets of Student-Teacher Interaction Through Structural Equation Modeling
flexible learning environments generative artificial intelligence adoption structural equation modeling student-teacher interaction technology acceptance...
Integrating generative artificial intelligence (GenAI) in education has gained significant attention, particularly in flexible learning environments (FLE). This study investigates how students’ voluntary adoption of GenAI influences their perceived usefulness (PU), perceived ease of use (PEU), learning engagement (LE), and student-teacher interaction (STI). This study employed a structural equation modeling (SEM) approach, using data from 480 students across multiple academic levels. The findings confirm that voluntary GenAI adoption significantly enhances PU and PEU, reinforcing established technology acceptance models (TAM). However, PU did not directly impact LE at the latent level—an unexpected finding that underscores students’ engagement’s complex and multidimensional nature in AI-enriched settings. Conversely, PEU positively influenced LE, which in turn significantly predicted STI. These findings suggest that usability, rather than perceived utility alone, drives deeper engagement and interaction in autonomous learning contexts. This research advances existing knowledge of GenAI adoption by proposing a structural model that integrates voluntary use, learner engagement, and teacher presence. Future research should incorporate variables such as digital literacy, self-regulation, and trust and apply longitudinal approaches to better understand the evolving role of GenAI inequitable, human-centered education.
The Association Between Mindfulness and Learning Burnout Among University Students: The Mediating Role of Regulatory Emotional Self-Efficacy
learning burnout meditating mindfulness regulatory emotional self-efficacy...
Mindfulness, recognized as a protective factor against learning burnout in higher education, has garnered considerable attention, yet its underlying mechanisms remain underexplored. This study examined the relationship between mindfulness, regulatory emotional self-efficacy, and learning burnout. Data from 461 Chinese university students were collected using a correlational design and cluster sampling method, employing the Five Facet Mindfulness Questionnaire, University Student Learning Burnout Scale, and Regulatory Emotional Self-Efficacy Scale. Hypotheses were tested using partial least squares structural equation modeling. Results showed that Participants exhibited above-average mindfulness (M=3.090), learning burnout (M=3.278), and regulatory emotional self-efficacy (M=3.417). Results revealed that mindfulness is directly and negatively related to learning burnout (β=-0.679, t = 28.657, p < .001). Regulatory emotional self-efficacy (β = -0.357, t = 8.592, p < .001) was significantly and negatively related to learning burnout. Mindfulness was significantly and positively related to regulatory emotional self-efficacy (β = 0.638, t = 24.306, p < .001), and regulatory emotional self-efficacy (R2: from .461 to .537) partially mediated the relationship between mindfulness and learning burnout. Besides, the Importance-Performance Matrix Analysis revealed that managing negative emotions significantly contributes to learning burnout but performs poorly, whereas non-reacting demonstrates both the lowest contribution and performance. Findings suggest that mindfulness indirectly alleviates learning burnout through regulatory emotional self-efficacy, providing evidence-based insights for targeted mindfulness interventions in higher education.