The Concept of Number Sequence in Graphical Representations for Secondary School Students
José Mariano Bajo-Benito , José María Gavilán-Izquierdo , Gloria Sánchez-Matamoros García
The aim of this work is to characterise the understanding that students in compulsory secondary education (14-16 years old) have of number sequences i.
- Pub. date: January 15, 2023
- Pages: 159-172
- 363 Downloads
- 680 Views
- 2 Citations
The aim of this work is to characterise the understanding that students in compulsory secondary education (14-16 years old) have of number sequences in graphical representations. The learning of numerical sequences is one of the first mathematical concepts to be developed in an infinite context. This study adopts the focus of semiotic representations as its theoretical framework. The participants consisted of 105 students and a qualitative methodology was used. The data collection instruments were a questionnaire and a semi-structured interview. The results allowed for three student profiles regarding number sequences in graphical representations to be identified. These profiles may facilitate a possible progression in the learning of number sequences for students in compulsory secondary education to be considered. Therefore, the results presented in this study can provide information about the learning hypotheses of mathematical tasks related to numerical sequences and can help in the design of such tasks.
compulsory secondary education students graphical representation number sequences progression in learning
Keywords: Compulsory secondary education students, graphical representation, number sequences, progression in learning.
References
Altay, M. K., Akyüz, E. Ö., & Erhan, G. K. (2014). A study of middle grade students’ performances in mathematical pattern tasks according to their grade level and pattern presentation context. Procedia – Social and Behavioural Sciences, 116, 4542–4546. https://doi.org/10.1016/j.sbspro.2014.01.982
Amaya, T. (2020). Evaluación de la faceta epistémica del conocimiento didáctico- matemático de futuros profesores de matemáticas en el desarrollo de una clase utilizando funciones [Evaluation of the epistemic facet of didactic-mathematical knowledge of future mathematics teachers in a class development using functions]. Bolema, 34(66), 110-131. https://doi.org/10.1590/1980-4415v34n66a06
Aranda, C., & Callejo, M. L. (2015). Perfiles de estudiantes en la comprensión de la aproximación al área de la superficie bajo una curva [Student profiles in understanding the approximation to the surface area under a curve]. In C. Fernández, M. Molina & N. Planas (Eds.), Investigación en educación matemática XIX (pp. 123-131). SEIEM
Ariza, A., & Llinares, S. (2009). Sobre la aplicación y uso del concepto de derivada en el estudio de conceptos económicos en estudiantes de Bachillerato y Universidad [The usefulness of derivative concept in learning economic concepts by high school and university students]. Enseñanza de las Ciencias, 27(1), 121-136. https://doi.org/10.5565/rev/ensciencias.3667
Biza, I., Hewitt, D., Watson, A., & Mason, J. (2020). Generalization strategies in finding the nth term rule for simple quadratic sequences. International Journal of Science and Mathematics Education, 18, 1105–1126. https://doi.org/10.1007/s10763-019-10009-0
Boigues, F. J., Llinares, S., & Estruch, V. D. (2010). Desarrollo de un esquema de la integral definida en estudiantes de ingenierías relacionadas con las ciencias de la naturaleza [Development of a scheme of the definite integral in engineering students related to natural sciences]. Revista Latinoamericana de Investigación en Matemática Educativa, 13(3), 129–158.
Callejo, M. L., & Zapatera, A. (2014). Flexibilidad en la resolución de problemas de identificación de patrones lineales en estudiantes de educación secundaria [Secondary school students’ flexibility when solving problems of recognition of lineal patterns]. Bolema, 28(48), 64–88.https://doi.org/10.1590/1980-4415v28n48a04
Cañadas, M. (2007). Descripción y caracterización del razonamiento inductivo utilizado por estudiantes de educación secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas [Description and characterization of inductive reasoning used by high school students when solving tasks related to linear and quadratic sequences] [Unpublished doctoral dissertation]. Universidad de Granada.
Codes, M., González Astudillo, M. T., Delgado Martín, M. L., & Monterrubio Pérez, M. C. (2013). Growth in the understanding of infinite numerical series: A glance through the Pirie and Kieren theory. International Journal of Mathematical Education in Science and Technology, 44(5), 652-662. https://doi.org/jnk6
Codes, M., & González-Martín, A. S. (2017). Sucesión de sumas parciales como proceso iterativo infinito: Un paso hacia la comprensión de las series numéricas desde el modelo APOS [Sequence of partial sums as an infinite iterative process: A step towards the understanding of numerical series from an APOS perspective]. Enseñanza de las Ciencias, 35(1), 89-110. https://doi.org/10.5565/rev/ensciencias.1927
Djasuli, M., Sa’dijah, C., Parta, I. N., & Daniel, T. (2017). Students’ reflective abstraction in solving number sequence problems. International Electronic Journal of Mathematics Education,12(3), 621–632. https://doi.org/jnk7
Duval, R. (2006). Un tema crucial en la Educación Matemática: La habilidad para cambiar el registro de representación [A crucial issue in mathematics education: The ability to change the register of representation]. La Gaceta de la Real Sociedad Matemática Española, 9(1), 143-168
Duval, R. (2016). Las condiciones cognitivas del aprendizaje de la geometría. Desarrollo de la visualización, diferenciaciones de los razonamientos, coordinación de sus funcionamientos [Cognitive conditions of geometry learning. Development of visualization, differentiation of reasoning, coordination of its functions]. In R. Duval & A. Sáenz-Ludlow (Eds.), Comprensión y aprendizaje en matemáticas: Perspectivas semióticas seleccionadas (pp. 13-60). Universidad Distrital Francisco José de Caldas.
Duval, R. (2017). Semiosis y pensamiento humano: Registros semióticos y aprendizajes intelectuales [Semiosis and human thought: Semiotic registers and intellectual learning] (2nd ed.). Universidad del Valle.
El Mouhayar, R., & Jurdak, M. (2016). Variation of student numerical and figural reasoning approaches by pattern generalisation type, strategy use and grade level. International Journal of Mathematical Education in Science and Technology, 47(2), 197–215. https://doi.org/10.1080/0020739X.2015.1068391
García, M., Llinares, S., & Sánchez–Matamoros, G. (2011). Characterizing thematized derivative schema by the underlying emergent structures. International Journal of Science and Mathematics Education, 9(5), 1023–1045. https://doi.org/10.1007/s10763-010-9227-2
Goldin, G. A. (2008). Perspectives on representation in mathematical learning and problem solving. In L. English (Ed.), Handbook of international research in mathematics education (pp. 178–203). Routledge.
González, M. T., & Aldana, E. (2010). Comprensión de la integral definida en el marco de la teoría APOE [Understanding the definite integral in the framework of APOE theory]. In A. Contreras & L. Ordoñez (Eds.), Jornadas de Investigación en Didáctica del Análisis Matemático (pp. 4-22). SEIEM.
Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33-40). Lawrence Erlbaum Associates.
Mamona, J. (1990). Sequences and series–Sequences and functions: Students’ confusions. International Journal of Mathematical Education in Science and Technology, 21(2), 333–337.
McDonald, M. A., Mathews, D. M., & Strobel, K. H. (2000). Understanding sequences: A tale of two objects. In E. Dubinsky, A. H. Schoenfeld, J. Kaput, C. Kessel & M. Keynes (Eds.), Research in collegiate mathematics education IV (pp. 77–102). American Mathematical Society. https://doi.org/10.1090/cbmath/008/05
Montenegro, P., Costa, C., & Lopes, B. (2018). Transformations in the visual representation of a figural pattern. Mathematical Thinking and Learning, 20(2), 91-107. https://doi.org/10.1080/10986065.2018.1441599
Moyer-Packenham, P. S. (2005). Using virtual manipulation to investigate patterns and generate rules in algebra. Teaching Children Mathematics, 11(8), 437–444. https://doi.org/10.5951/TCM.11.8.0437
Official State Bulletin. (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria. BOE, 3 del 3 de enero de 2015 [Royal Decree 1105/2014, of December 26, establishing the minimum teachings corresponding to Compulsory Secondary Education. BOE, 3 of January 3, 2015]. Ministerio de Educación y Ciencia.
Orton, A. (1983). Students’ understanding of integration. Educational Studies in Mathematics, 14(1), 1-18. https://doi.org/10.1007/BF00704699
Pons, J., Valls, J., & Llinares, S. (2012). La comprensión de la aproximación a un número en el acceso al significado de límite de una función en un punto [Understanding the approximation to a number in accessing the meaning of limit of a function at a point]. In A. Estepa, Á. Contreras, J.Deulofeu, M. C. Penalva, F. J. García & L. Ordóñez (Eds.), Investigación en Educación Matemática XVI (pp. 435-445). SEIEM.
Przenioslo, M. (2006). Conceptions of a sequence formed in secondary schools. International Journal of Mathematical Education in Science and Technology, 37(7), 805–823. https://doi.org/10.1080/00207390600733832
Rivera, F. D. (2013). Teaching and learning patterns in school mathematics. Springer. https://doi.org/jnk8
Rivera, F. D., & Becker, J. (2008). Middle school children’s cognitive perceptions of constructive and deconstructive generalisations involving linear figural patterns. ZDM Mathematics Education, 40, 65–82. https://doi.org/d4nqnk
Roh, K. H. (2008). Students’ images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics, 69(3), 217-233. https://doi.org/10.1007/s10649-008-9128-2
Sánchez-Matamoros, G., García, M., & Llinares, S. (2006). El desarrollo del esquema de derivada. [The development of the derivative scheme]. Enseñanza de las Ciencias, 24(1), 85-98. https://doi.org/10.5565/rev/ensciencias.3816
Sierpinska, A. (1990). Some remarks on understanding in mathematics. For the Learning of Mathematics, 10(3), 24–36.
Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114- 145. https://doi.org/10.2307/749205
Stewart, J., Hernández, R., & Sanmiguel, C. (2007). Introducción al cálculo [Introduction to calculus]. S.A. Ediciones Thomson.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. https://doi.org/10.1007/BF00305619
Warren, E., & Cooper, T. (2008). Generalising the pattern rule for visual growth patterns: Actions that support eight year olds’ thinking. Educational Studies in Mathematics, 67(2), 171–185. https://doi.org/fgftwp
Žakelj, A., & Klančar, A. (2022). The role of visual representations in geometry learning. European Journal of Educational Research, 11(3), 1393-1411. https://doi.org/10.12973/eu-jer.11.3.1393