Validation of Students' Green Behavior Instrument Based on Local Potential Using Structural Equation Modeling With Smart Partial Least Squares
Siti Nurhidayati , Safnowandi , Sanapiah , Khaeruman , Akhmad Sukri
This study aims to develop and validate a green behavior instrument based on local potential using structural equation modeling (SEM) with smart parti.
- Pub. date: January 15, 2025
- Online Pub. date: December 26, 2024
- Pages: 213-228
- 103 Downloads
- 205 Views
- 0 Citations
This study aims to develop and validate a green behavior instrument based on local potential using structural equation modeling (SEM) with smart partial least squares (SmartPLS). The instrument consists of 40 statements covering five main indicators: environmental maintenance, waste reduction, saving natural resources, sustainable mobility and consumption, and community education. This study addresses a gap in existing research by creating a context-specific tool for assessing green behavior, incorporating local cultural and ecological factors. While prior studies emphasize global sustainability principles, they often overlook the significance of local practices and values, which are essential for effective environmental education. By integrating local potential, this instrument bridges global sustainability goals with regional contexts, enabling meaningful and practical student engagement. The instrument was validated through content validity testing, exploratory and confirmatory factor analyses, and construct validity and reliability testing using SEM with SmartPLS. The results indicate strong content validity, with content validity index (CVI) values ranging from .80 to .90. After analysis, 34 valid items were retained from the initial 40. This study contributes to the literature by developing an instrument that aligns with global sustainability goals while integrating local cultural practices and ecological contexts. It offers insights into how local knowledge enhances sustainability education, providing a holistic framework for assessing green behavior across diverse regions.
instrument validation green behavior local potential structural equation modeling smart partial least squares
Keywords: Instrument validation, green behavior, local potential, structural equation modeling, smart partial least squares.
References
Abd-Mutalib, H., Muhammad Jamil, C. Z., Mohamed, R., & Ismail, S. N. A. (2023). The determinants of environmental knowledge sharing behaviour among accounting educators: A modified theory of planned behaviour. International Journal of Sustainability in Higher Education, 24(5), 1105–1135. https://doi.org/10.1108/ijshe-02-2022-0053
Abdollahi, A., & Allen, K. A. (2021). Psychometric assessment of the Persian translated version of the romantic perfectionism scale among couples. Psychological Reports, 125(6), 3224–3237. https://doi.org/10.1177/00332941211036026
Adishesa, M. S., Rocky, Suwartono, C. (2024). Adaptasi dan uji psikometri alat ukur perilaku ramah lingkungan versi Indonesia [Adaptation of environmentally-friendly behavior scale to Indonesian]. JPPP-Jurnal Penelitian Dan Pengukuran Psikologi, 13(1), 55–64. https://doi.org/10.21009/jppp.131.07
Ardiyansah, A. (2023). Partisipasi publik berbasis nilai budaya masyarakat adat Baduy: Upaya pelestarian lingkungan [Public participation based on cultural values of the Baduy indigenous community: Environmental conservation efforts]. Reformasi, 13(2), 261–273. https://doi.org/10.33366/rfr.v13i2.4950
Astuti, S. A., & Constantinus, C. (2024). Pengaruh kecerdasan lingkungan dan kepribadian intuitif terhadap perilaku ramah lingkungan dengan sikap sebagai mediator [The influence of environmental intelligence and intuitive personality on environmentally friendly behavior with attitude as a mediator]. Jurnal Penelitian Inovatif, 4(3), 859–866. https://doi.org/10.54082/jupin.418
Aswita, D., Fuadi, T. M., Abubakar, Hanim, N., Azzarkasyi, M., & Febriyanti, D. (2022). Development measurement of environmental literacy and ethics instrument for adults education. International Journal of Health Sciences, 6(5), 7623–7638. https://doi.org/10.53730/ijhs.v6ns5.11651
Bayati, M., Rashidian, A., Akbari Sari, A., & Sefiddashti, S. (2017). General practitioners' views on key factors affecting their desired income: A principal component analysis approach. Medical Journal of the Islamic Republic of Iran, 31(1), 236–240. https://doi.org/10.14196/mjiri.31.41
Bekar, M., Demirel, G., Evcılı, F., & Doğaner, A. (2021). A scale development study: Gynecologic cancer prevention information scale. Clinical and Experimental Health Sciences, 11(1), 9–13. https://doi.org/10.33808/clinexphealthsci.647862
Biasutti, M., & Frate, S. (2017). A validity and reliability study of the attitudes toward sustainable development scale. Environmental Education Research, 23(2), 214–230. https://doi.org/10.1080/13504622.2016.1146660
Boduszek, D., & Dhingra, K. (2016). Construct validity of the beck hopelessness scale (BHS) among university students: A multitrait–multimethod approach. Psychological Assessment, 28(10), 1325–1330. https://doi.org/10.1037/pas0000245
Braeken, J., & van Assen, M. A. L. M. (2017). An empirical kaiser criterion. Psychological Methods, 22(3), 450–466. https://doi.org/10.1037/met0000074
Chen, T., & Wu, Z. (2022). How to facilitate employees’ green behavior? The joint role of green human resource management practice and green transformational leadership. Frontiers in Psychology, 13, Article 906869. https://doi.org/10.3389/fpsyg.2022.906869
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indices for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
Chin, W. W. (2010). How to write up and report PLS analyses. In Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.), Handbook of partial least squares (pp. 655–690). Springer. https://doi.org/10.1007/978-3-540-32827-8_29
Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research and Evaluation, 10(1), Article 7. https://doi.org/10.7275/jyj1-4868
Del Giudice, M. (2022). The square-root scree plot: A simple improvement to a classic display. PsyArXiv. https://doi.org/10.31234/osf.io/axubd
Diquito, T. A., Jr., Salunoy, R. G., Arcenas, C. C., Salda, C. J. P., & Panerio, C., Jr. (2023). Exploring students’ satisfaction in formative assessment tools in online-blended learning amidst the COVID-19 pandemic. American Journal of Education and Technology, 2(3), 83–90. https://doi.org/10.54536/ajet.v2i3.1850
Eze, N. M., Asogwa, O. C., & Eze, C. M. (2021). Principal component factor analysis of some development factors in southern Nigeria and its extension to regression analysis. Journal of Advances in Mathematics and Computer Science, 36(3), 132–160. https://doi.org/10.9734/jamcs/2021/v36i330351
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272
Fachrudin, H. T., & Fachrudin, K. A. (2021). Factors influencing energy conservation application in green campus design based on green behavior. International Journal of Energy Economics and Policy, 11(4), 511–520. https://doi.org/10.32479/ijeep.11355
Fatimah, A. N., & Irwansyah. (2020). Indonesian version of FASER LX scale to measure learner experience: A validation study. E3S Web of Conferences, 211, Article 01013. https://doi.org/10.1051/e3sconf/202021101013
Fitriana, N., Hutagalung, F. D., Awang, Z., & Zaid, S. M. (2022). Happiness at work: A cross-cultural validation of happiness at work scale. Plos One, 17(1), Article e0261617. https://doi.org/10.1371/journal.pone.0261617
Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at Horn's parallel analysis with ordinal variables. Psychological Methods, 18(4), 454–474. https://doi.org/10.1037/a0030005
Gericke, N., Boeve-de Pauw, J., Berglund, T., & Olsson, D. (2019). The sustainability consciousness questionnaire: The theoretical development and empirical validation of an evaluation instrument for stakeholders working with sustainable development. Sustainable Development, 27(1), 35–49. https://doi.org/10.1002/sd.1859
Goleman, D., Bennett, L., & Barlow, Z. (2012). Ecoliterate: How educators are cultivating emotional, social and ecological intelligence. Jossey-Bass.
Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Comparing PLS to regression and LISREL: A response to Marcoulides, Chin, and Saunders. MIS Quarterly, 36(3), 703–716. https://doi.org/10.2307/41703476
Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management and Data Systems, 117(3), 442–458. https://doi.org/10.1108/imds-04-2016-0130
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.
Hair, J. F., Risher, J. J., Sarstedt, M. & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/ebr-11-2018-0203
Hamedi, S. M., Pishghadam, R., & Ghazanfari, M. (2015). Detecting the underlying constructs of the self-efficacy scale for English language learners’ textbooks (SES-ELLT) through exploratory factor analysis. Journal of Language Teaching and Research, 7(1), 216–225. https://doi.org/10.17507/jltr.0701.25
Hariyadi, E., Maryani, E., & Kastolani, W. (2021). Analisis literasi lingkungan pada mahasiswa pendidikan geografi [Analysis of environmental literacy in geography education students]. Gulawentah Jurnal Studi Sosial, 6(1), 1–16. https://doi.org/10.25273/gulawentah.v6i1.6685
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115–135. https://doi.org/10.1007/s11747-014-0403-8
Jordan, P., & Spieß, M. (2019). Rethinking the interpretation of item discrimination and factor loadings. Educational and Psychological Measurement, 79(6), 1103–1132. https://doi.org/10.1177/0013164419843164
Kim, S., Eccleston, C., Klekociuk, S., Cook, P. S., & Doherty, K. (2022). Development and psychometric evaluation of the Dementia Public Stigma Scale. International Journal of Geriatric Psychiatry, 37(2), Article e5672. https://doi.org/10.1002/gps.5672
Kuswati, R., Soepatini, S., Vrasica, R., & Rayyantika, F. (2021). Instruments validation of pro-environmental behaviour model. In Proceedings of the 14th University Research Colloquium 2021: Sekolah Tinggi Ilmu Ekonomi Muhammadiyah Cilacap (pp. 525–537). University Research Colloquium. https://bit.ly/3Dtsr5L
Ledesma, R. D., Valero‐Mora, P., & Macbeth, G. (2015). The scree test and the number of factors: A dynamic graphics approach. The Spanish Journal of Psychology, 18, Article E11. https://doi.org/10.1017/sjp.2015.13
Leite, Â., Lopes, D., & Pereira, L. (2023). Pro-environmental behavior and climate change anxiety, perception, hope, and despair according to political orientation. Behavioral Sciences, 13(12), Article 966. https://doi.org/10.3390/bs13120966
Long, Z., & Cai, A. (2022). The impact of environmental responsibility on green consumption behavior. International Journal of Education Humanities and Social Science, 5(5), 119–128. https://doi.org/10.54922/ijehss.2022.0445
Lopez-Odar, D., Álvarez-Risco, A., Vara-Horna, A., Chafloque-Céspedes, R., & Sekar, M. C. (2020). Validity and reliability of the questionnaire that evaluates factors associated with perceived environmental behavior and perceived ecological purchasing behavior in Peruvian consumers. Social Responsibility Journal, 16(3), 403–417. https://doi.org/10.1108/srj-08-2018-0201
Lorenzo‐Seva, U., & Ferrando, P. J. (2019). Unrestricted factor analysis of multidimensional test items based on an objectively refined target matrix. Behavior Research Methods, 52(1), 116–130. https://doi.org/10.3758/s13428-019-01209-1
Morris, S. A., & Marshall, T. E. (2004). Perceived control in information systems. Journal of Organizational and End User Computing, 16(2), 38–56. https://doi.org/10.4018/joeuc.2004040103
Nazeri, A. M., Nakhaee, N., & Navabi, N. (2020). Validation of an ultrashort Persian version of oral health impact profile (OHIP-5) questionnaire. Pesquisa Brasileira Em Odontopediatria E Clínica Integrada, 20, Article e5073. https://doi.org/10.1590/pboci.2020.001
Norris, M., & Lecavalier, L. (2009). Evaluating the use of exploratory factor analysis in developmental disability psychological research. Journal of Autism and Developmental Disorders, 40, 8–20. https://doi.org/10.1007/s10803-009-0816-2
Nunes, A. F., Monteiro, P. L., & Nunes, A. S. (2020). Factor structure of the convergence insufficiency symptom survey questionnaire. Plos One, 15(2), Article e0229511. https://doi.org/10.1371/journal.pone.0229511
Nurhidayati, S., Safnowandi, Khaeruman, & Sukri, A. (2024). The design of project-based learning model based on local potential and social constructive investigation and its impact on students' green behavior. Perspectives of Science and Education/Perspektivy Nauki i Obrazovania, 67(1), 201–216. https://doi.org/10.32744/pse.2024.1.11
Nurhidayati, S., Susantini, E., Safnowandi, Rachmadiarti, F., Khaeruman, & Sukri, A. (2022). Development of local potential-based environmental care instrument and its ability to reveal students' caring attitudes at genders and grades. International Journal of Instruction, 15(4), 613–628. https://doi.org/10.29333/iji.2022.15433a
Nurhidayati, S., Susantini, E., Safnowandi, Rachmadiarti, F., Khaeruman, & Sukri, A. (2023). Revealing students' environment care attitudes viewed by different gender and departments. In J. Handhika, M. Lukitasari, S. Ricahyono, & D. A. Nugraha (Eds.), Proceedings of the 2022 International Conference on Educational Technology (ICETECH) (Vol. 745, pp. 132–140). Atlantis Press. https://doi.org/10.2991/978-2-38476-056-5_15
Raîche, G., Walls, T. A., Magis, D., Riopel, M., & Blais, J.-G. (2013). Non-graphical solutions for Cattell’s scree test. Methodology, 9(1), 23–29. https://doi.org/10.1027/1614-2241/a000051
Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2020). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 31(12), 1617–1643. https://doi.org/10.1080/09585192.2017.1416655
Rojas-Valverde, D., Pino-Ortega, J., Gómez-Carmona, C. D., & Rico-González, M. (2020). A systematic review of methods and criteria standard proposal for the use of principal component analysis in team’s sports science. International Journal of Environmental Research and Public Health, 17(23), Article 8712. https://doi.org/10.3390/ijerph17238712
Salazar-Concha, C., Ficapal-Cusí, P., Peñarroja, V., & Enache-Zegheru, M. (2022). Validation of the Spanish version of the technostress creators scale in Chilean workers. Anales De Psicología, 38(3), 518–529. https://doi.org/10.6018/analesps.509551
Sarstedt, M., & Cheah, J.-H. (2019). Partial least squares structural equation modeling using SmartPLS: A software review. Journal of Marketing Analytics, 7, 196–202. https://doi.org/10.1057/s41270-019-00058-3
Solekah, N. A., Handriana, T., & Usman, I. (2024). Understanding Zillennials consumer green behavior of reducing plastic bag use through the theory of planned and interpersonal behavior. Journal of Consumer Sciences, 9(2), 206–225. https://doi.org/10.29244/jcs.9.2.206-225
Sugiarta, R. D., Arofiati, F., & Rosa, E. M. (2023). Validity and reliability of research instruments on the effect of motivation on nurse performance in moderation with nurse credentials. Jurnal Medicoeticolegal Dan Manajemen Rumah Sakit, 12(1), 46–55. https://doi.org/10.18196/jmmr.v12i1.6
Sukri, A., Rizka, M. A., Purwanti, E., Ramdiah, S., & Lukitasari, M. (2022). Validating student’s green character instrument using factor and Rasch model. European Journal of Educational Research, 11(2), 859–872. https://doi.org/10.12973/eu-jer.11.2.859
Suratno, S. (2020). The determinant factors of students’ green behavior: Evidence from Indonesia. Jurnal Pendidikan Ekonomi dan Bisnis, 8(2), 165-173. https://doi.org/10.21009/JPEB.008.2.8
Susananto, P. H., Arief, M., Usman, B., & Tiarapuspa. (2023). Employee performance model based on E-HRM: Employee green behavior as a performance indicator in the coal mining company. Journal of Social Science, 4(1), 16–29. https://doi.org/10.46799/jss.v4i1.459
Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson Education.
Thayayuth, K., & Pimdee, P. (2018). Energy conservation behavior of Thai university students. Energy and Environment Research, 8(2), 55–62. https://doi.org/10.5539/eer.v8n2p55
Trendafilov, N. T., Fontanella, S., & Adachi, K. (2017). Sparse exploratory factor analysis. Psychometrika, 82(4), 778–794. https://doi.org/10.1007/s11336-017-9575-8
Valencia, A. (2023). Pengetahuan dan sikap mahasiswa kedokteran gigi DKI Jakarta tentang konsep green dentistry [Knowledge and attitudes of DKI Jakarta dental students regarding the concept of green dentistry]. Jurnal Ilmiah Dan Teknologi Kedokteran Gigi, 19(2), 99–105. https://doi.org/10.32509/jitekgi.v19i2.2570
Wandari, N. K. M. A., & Darma, G. S. (2021). Pengelolaan karakter green-behavior pada generasi milenial dalam meningkatkan minat penggunaan green-product [Managing green behavior character in the millennial generation to increase interest in using green products]. Jurnal Nusantara Aplikasi Manajemen Bisnis, 6(1), 49–61. https://bit.ly/3DsQKRB
Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8, 1–13. https://doi.org/10.33151/ajp.8.3.93
Wulandari, A. I., & Radia, E. H. (2021). Pengembangan instrumen penilaian sikap tanggung jawab pembelajaran tematik terpadu kelas V SD [Development of an integrated thematic learning responsibility attitude assessment instrument for grade V elementary school]. Mimbar PGSD Undiksha, 9(1), 10–18. https://doi.org/10.23887/jjpgsd.v9i1.32979
Yaşar, M. E., Baydaş, A., & Çelik, Ş. (2020). Determination of factors affecting the preferences of youth for purchasing new products: Application of confirmatory factor analysis. Bingöl Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 4(1), 195–225. https://doi.org/10.33399/biibfad.743659
Yusoff, M. S. B. (2019). ABC of content validation and content validity index calculation. Education in Medicine Journal, 11(2), 49–54. https://doi.org/10.21315/eimj2019.11.2.6
Zuhria, S. A., & Azmi, S. (2023). Strategi peningkatan produktivitas dari penggunaan listrik dengan analisis jejak karbon pada produksi tepung karagenan [Productivity improvement strategy of electricity usage with carbon footprint analysis in carrageenan flour production]. Jurnal Optimalisasi, 9(1), 1–6. https://doi.org/10.35308/jopt.v9i1.5761
Zwierzchowska, A., Kostorz, K., Rosołek, B., & Tomińska-Conte, E. (2022). Validation of the perceptions of inclusion questionnaire including PE teachers’ opinion as part of an innovative use of the tool. Sustainability, 14(6), Article 3241. https://doi.org/10.3390/su14063241