logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Research Article

Perspectives on Lessons From the COVID-19 Outbreak for Post-pandemic Higher Education: Continuance Intention Model of Forced Online Distance Teaching

Kosta Dolenc , Andrej Šorgo , Mateja Ploj-Virtič

The response of most universities to the Coronavirus disease (COVID-19) pandemic was Online Distance Teaching (ODT), which was a new experience for ma.

T

The response of most universities to the Coronavirus disease (COVID-19) pandemic was Online Distance Teaching (ODT), which was a new experience for many educators and students. The aim of the study was to investigate the response of university teachers to ODT. A questionnaire was sent to all university teachers (N = 914). We received 290 usable responses. To create a Continuance Intention Model of Forced Online Distance Teaching (CIMoFODT), Confirmatory Factorial Analysis (CFA) and Structural Equation Modelling (SEM) were used in addition to descriptive and inferential statistics. The main findings were as follows: (i) during the closure, use of the videoconferencing system MS Teams was the only item that increased significantly, owing to mandatory use; (ii) the increase in the use of other applications (e.g., Moodle, email) was minimal; (iii) after the reopening of the university, email, Moodle, and supplementary online materials will be used for ODT; MS Teams will be used for small group teaching and individual consultations; (iv) CIMoFODT can be applied to explain the intention to continue ODT. The main conclusion is that teachers will return to traditional teaching when classrooms reopen.

Keywords: Continuance intention, COVID-19 outbreak, higher education, online distance teaching.

cloud_download PDF
Cite
Article Metrics
Views
776
Download
1279
Citations
Crossref
7

Scopus
8

References

Abdullah, F., & Ward, R. (2016). Developing a general extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256. https://doi.org/10.1016%2Fj.chb.2015.11.036

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Al-alak, B. A., & Alnawas, I. A. (2011). Measuring the acceptance and adoption of e-learning by academic staff. Knowledge Management & E-Learning: An International Journal, 3(2), 201-221. https://doi.org/10.34105/j.kmel.2011.03.016

Bagozzi, R. P., Davis, F. D., & Warshaw, P. R. (1992). Development and test of a theory of technological learning and usage. Human Relations, 45(7), 659–686. https://doi.org/10.1177/001872679204500702

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295x.84.2.191

Bandyopadhyay, S., & Natarajan, V. (2011). Service quality of educational websites: An empirical study. Journal of Business & Economics Research, 6(6), 49-54. https://doi.org/10.19030/jber.v6i6.2430

Benlian, A., Koufaris, M., & Hess, T. (2011). Service quality in software-as-a-service: developing the SaaS-qual Measure and Examining its role in usage continuance. Journal of Management Information Systems, 28(3), 85-126. https://doi.org/10.2753/mis0742-1222280303

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921

Bhuasiri, W., Xaymoungkhoun, O., Zo, H., Rho, J. J., & Ciganek, A. P. (2012). Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty. Computers & Education, 58(2), 843–855. https://doi.org/10.1016/j.compedu.2011.10.010

Bourgonjon, J., Valcke, M., Soetaert, R., & Schellens, T. (2010). Students’ perceptions about the use of video games in the classroom. Computers & Education, 54(4), 1145-1156. https://doi.org/10.1016/j.compedu.2009.10.022

Byrne, B. M. (2013). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming. Routledge. https://doi.org/10.4324/9781410600219

Carillo, K., Scornavacca, E., & Za, S. (2017). The role of media dependency in predicting continuance intention to use ubiquitous media systems. Information & Management, 54(3), 317–335. https://doi.org/10.1016/j.im.2016.09.002

Cheawjindakarn, B., Suwannatthachote, P., & Theeraroungchaisri, A. (2012). Critical success factors for online distance learning in higher education: A review of the literature. Creative Education, 3(8), 61-66. https://doi.org/10.4236/ce.2012.38b014

Chroustová, K., Bilek, M., & Šorgo, A. (2017). Validation of theoretical constructs toward suitability of educational software for chemistry education: Differences between users and nonusers. Journal of Baltic Science Education, 16(6), 873-897. https://doi.org/10.33225/jbse/17.16.873

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Debevc, M., Weiss, J., Šorgo, A., & Kožuh, I. (2020). Solfeggio learning and the influence of a mobile application based on visual. auditory and tactile modalities. British Journal of Educational Technology, 51(1), 177-193. https://doi.org/10.1111/bjet.12792

Deng, L., Turner, D. E., Gehling, R., & Prince, B. (2010). User experience, satisfaction, and continual usage intention of IT. European Journal of Information Systems, 19(1), 60–75. https://doi.org/10.1057/ejis.2009.50

Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5-22. https://doi.org/10.1177%2F0047239520934018

Dolenc, K., Šorgo, A., & Ploj Virtič, M. (2021). The difference in views of educators and students on Forced Online Distance Education can lead to unintentional side effects. Education and Information Technologies, 26, 7079-7105. https://doi.org/10.1007/s10639-021-10558-4

Ertmer, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology integration? Educational Technology Research and Development, 53(4), 25-39. https://doi.org/10.1007/bf02504683

Hepp, P., Hinostroza, J. E., Laval, E., & Rehbein, L. (2004). Technology in schools: Education, ICT and the knowledge society. UNESCO: ICT In Education Policy Toolkit. https://bit.ly/3pPI9iV

Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020, April 28). The Difference Between Emergency Remote Teaching and Online Learning. https://bit.ly/3uHfA7w

Hussein, M. H., Ow, S. H., Ibrahim, I., & Mahmoud, M. A. (2021). Measuring instructors [sic] continued intention to reuse Google Classroom in Iraq: a mixed-method study during COVID-19, Interactive Technology and Smart Education, 18(3), 380-402. https://doi.org/10.1108/ITSE-06-2020-0095

Igbaria, M., Parasuraman, S., & Baroudi, J. J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13(1), 127-143. https://doi.org/10.1080/07421222.1996.11518115

Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. M. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279-305. http://doi.org/10.2307/249498

Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications.

Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506–516. https://doi.org/10.1016/j.compedu.2009.09.002

Liao, C., Palvia, P. C., & Chen, J. (2009). Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). International Journal of Information Management, 29(4), 309-320. https://doi.org/10.1016/j.ijinfomgt.2009.03.004

Maxmen, A. (2021). Has COVID taught us anything about pandemic preparedness? Nature, 596(7872), 332-335. https://doi.org/10.1038/d41586-021-02217-y

Moore, J. L., Dickson-Deane, C., & Galyen, K. (2011). E-Learning, online learning, and distance learning environments: Are they the same? The Internet and Higher Education, 14(2), 129-135. https://doi.org/10.1016/j.iheduc.2010.10.001

Nijs, L., & Leman, M. (2014). Interactive technologies in the instrumental music classroom: A longitudinal study with the music paint machine. Computers & Education, 73, 40–59. https://doi.org/10.1016/j.compedu.2013.11.008

Nikou, S. A. (2021). Web-based videoconferencing for teaching online: Continuance intention to use in the post-COVID-19 period. Interaction Design and Architecture, 47(Winter), 123-143. https://doi.org/10.1109/ICALT52272.2021.00137

Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460-469. https://doi.org/10.2307/3150499

Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162. https://www.jstor.org/stable/jeductechsoci.12.3.150

Ploj Virtič, M., Dolenc, K., & Šorgo, A. (2021). Changes in online distance learning behaviour of university students during the coronavirus disease 2019 outbreak, and development of the Model of Forced Distance Online Learning Preferences. European Journal of Educational Research, 10(1), 393-411. https://doi.org/10.12973/eu-jer.10.1.393

Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879

Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531-544. https://doi.org/10.1177/014920638601200408

Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683–696. https://doi.org/10.1016/j.ijhcs.2006.01.003

Rogers, E. (1995). Diffusion of Innovations. Free Press.

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78. https://doi.org/10.1037/0003-066x.55.1.68

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35. https://doi.org/10.1016/j.compedu.2018.09.009

Sternberg, R. J. (2005). The theory of successful intelligence. Interamerican Journal of Psychology, 39(2), 189-202. https://bit.ly/3uGydsk

Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in Human Behavior, 27(6), 2067-2077. https://doi.org/10.1016/j.chb.2011.08.005

Šumak, B., Polančič, G., & Heričko, M. (2010). An empirical study of virtual learning environment adoption using UTAUT. In A. M. Gadomski, B. Krämer, C. Lester & M. Popescu (Eds.), 2010 Second International Conference on Mobile, Hybrid, and On-Line Learning. (pp.17-22). Piscataway. https://doi.org/10.1109/elml.2010.11

Šumak, B., Pušnik, M., Heričko, M., & Šorgo, A. (2017). Differences between prospective, existing, and former users of interactive whiteboards on external factors affecting their adoption, usage and abandonment. Computers in Human Behavior, 72, 733-756. https://doi.org/10.1016/j.chb.2016.09.006

Šumak, B., & Šorgo, A. (2016). The acceptance and use of interactive whiteboards among teachers: Differences in UTAUT determinants between pre-and post-adopters. Computers in Human Behavior, 64, 602-620. https://doi.org/10.1016/j.chb.2016.07.037

Sun, P. C., Tsai, R. J., Finger, G., Chen, Y. Y., & Yehz, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers & Education, 50(4). 1183-1202. https://doi.org/10.1016/j.compedu.2006.11.007

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 124-143. http://doi.org/10.2307/249443

Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810. https://doi.org/10.1016/j.ijhcs.2006.05.001

Tondeur, J., Van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers’ pedagogical beliefs and technology use in education: a systematic review of qualitative evidence. Educational Technology Research and Development, 65(3), 555-575. https://doi.org/10.1007/s11423-016-9481-2

Tzur, S., Katz, A., & Davidovich, N. (2021). Learning supported by technology: Effectiveness with educational software. European Journal of Educational Research, 10(3), 1137-1156. https://10.12973/eu-jer.10.3.1139

University of Ljubljana. (2021). 1KA OneClick Survey. https://www.1ka.si/d/en

Urbach, N., Smolnik, S., & Riempp, G. (2010). An empirical investigation of employee portal success. The Journal of Strategic Information Systems, 19(3), 184–206. https://doi.org/10.1016/j.jsis.2010.06.002

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. https://doi.org/10.2307/30036540

Wu, B., & Zhang, C. (2014). Empirical study on continuance intentions towards E-Learning 2.0 systems. Behaviour & Information Technology, 33(10), 1027-1038. https://doi.org/10.1080/0144929x.2014.934291

Zhao, Y., & Cziko, G. A. (2001). Teacher adoption of technology: A perceptual control theory perspective. Journal of Technology and Teacher Education, 9(1), 5-30. https://www.learntechlib.org/primary/p/8455/

Zhou, Z., Fang, Y., Vogel, D. R., Jin, X.-L., & Zhang, X. (2012). Attracted to or locked in? Predicting Continuance Intention in social virtual world services. Journal of Management Information Systems, 29(1), 273–306. https://doi.org/10.2753/mis0742-1222290108

...