' active learning' Search Results
Validity of Measurement and Causal Model of Online Scam Protection Behavior Among Risk Thai Students
causal model confirmatory factor analysis high school student online scam protection behavior...
This research investigated the validity of measurement and causal model of online scam protection behavior (OSPB) among at risk Thai students. The sample comprised 286 high school students from three demonstration schools under the University. Data were analyzed using descriptive statistics, confirmatory factor analysis (CFA), and structural equation modeling (SEM). The factor loadings for all items satisfied the standard criteria with scores ranging from .40 to .80, item-total correlations ranging from .405 to .718, and Cronbach’s alpha coefficients ranging from .773 to .928. The modified model demonstrated a better fit with the empirical data (χ² = 47.62, df = 37, p = .113, χ²/df = 1.287, RMSEA = .032, SRMR = .028, GFI = .97, CFI = 1.00, NFI = .99). All factors: a) awareness of online risks, b) inhibitory control, c) game-based learning, d) social support, and e) motivation to prevent online scams can predict 81% of OSPB. The motivation to prevent online scams strongly influenced OSPB, with an effect size of .60. Additionally, all factors can predict 88% of the motivation for online scam prevention, suggesting that Protection Motivation Theory (PMT) is a suitable framework for understanding and evaluating Thai students' preventive behaviors in online deception scenarios. This newly developed instrument is highly reliable and can be effectively used by researchers and educators to assess the risk of online fraud victimization among high school students.
Integrating Artificial Intelligence Into English Language Teaching: A Systematic Review
artificial intelligence english language teaching systematic review...
This research aims to systematically review the integration of artificial intelligence (AI) in English language teaching and learning. It specifically seeks to analyze the current literature to identify how AI could be utilized in English language classrooms, the specific tools and pedagogical approaches employed, and the challenges faced by educators. Using the PRISMA-guided Systematic Literature Review (SLR) methodology, articles were selected from Scopus, Science Direct, and ERIC, and then analyzed thematically with NVivo software. Findings reveal that AI enhances English teaching through tools like grammar checkers, chatbots, and language learning apps, with writing assistance being the most common application (54.55% of studies). Despite its benefits, challenges such as academic dishonesty, over-reliance on AI (27.27% of studies), linguistic issues, and technical problems remain significant. The study emphasizes the need for ethical considerations and teacher training to maximize AI’s potential. It also highlights societal concerns, including the digital divide, underscoring the importance of equitable access to AI-powered education for learners of all socioeconomic backgrounds.
A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education
augmented reality bibliometric collaboration mathematical education scopus database...
This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
Determining Factors Influencing Indonesian Higher Education Students' Intention to Adopt Artificial Intelligence Tools for Self-Directed Learning Management
artificial intelligence artificial neural networks educational management intention self-directed learning...
Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has significantly transformed educational management, specifically in self-directed learning (SDL). This study examines the factors influencing Indonesian higher education students' intention to adopt AIED tools for self-directed learning using a combination of the Theory of Planned Behavior (TPB) with additional theories. A total of 322 university students from diverse academic backgrounds participated in the structured survey. This study utilized machine learning it was Artificial Neural Networks (ANN) to analyze nine factors, including attitude (AT), subjective norms (SN), perceived behavioral control (PBC), optimism (OP), user innovativeness (UI), perceived usefulness (PUF), facilitating conditions (FC), perception towards ai (PTA), and intention (IT) with a total of 41 items in the questionnaire. The model demonstrated high predictive accuracy, with SN emerging as the most significant factor to IT, followed by AT, PBC, PUF, FC, OP, and PTA. User innovativeness was the least influential factor due to the lowest accuracy. This study provides actionable insights for educators, policymakers, and technology developers by highlighting the critical roles of social influence, supportive infrastructure, and student beliefs in shaping AIED adoption for self-directed learning (SDL). This research not only fills an important gap in the literature but also offers a roadmap for designing inclusive, student-centered AI learning environments that empower learners and support the future of SDL in digital education.
Intermediality in Student Writing: A Preliminary Study on The Supportive Potential of Generative Artificial Intelligence
artificial intelligence automated writing evaluation chatgpt intermedia transmedia...
The proliferating field of writing education increasingly intersects with technological innovations, particularly generative artificial intelligence (GenAI) resources. Despite extensive research on automated writing evaluation systems, no empirical investigation has been reported so far on GenAI’s potential in cultivating intermedial writing skills within first language contexts. The present study explored the impact of ChatGPT as a writing assistant on university literature students’ intermedial writing proficiency. Employing a quasi-experimental design with a non-equivalent control group, researchers examined 52 undergraduate students’ essay writings over a 12-week intervention. Participants in the treatment group harnessed the conversational agent for iterative essay refinement, while the reference group followed traditional writing processes. Utilizing a comprehensive four-dimensional assessment rubric, researchers analyzed essays in terms of relevance, integration, specificity, and balance of intermedial references. Quantitative analyses revealed significant improvements in the AI-assisted group, particularly in relevance and insight facets. The findings add to the research on technology-empowered writing learning.