logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS

' distance learning mathematics' Search Results

...

In an era where diversity and digitalization significantly influence higher education, understanding and adapting to various learning preferences is crucial. This study comprehensively analyzes 394 scholarly articles from 1984 to 2022 using bibliometric methods, providing a dynamic overview of the research patterns in learning styles within higher education. We identified four stages of development during this period: 1984–1995 (Low-interest), 1996–2005 (Early development), 2006–2018 (Development), and 2019–2022 (Intensification). Our analysis highlights that the United States, the United Kingdom, and Australia were the top three leading publishers of research on learning styles in higher education. The results reveal three main topics of publications: educational technology, learning environments, and subject behaviors. This research not only identifies emerging research topics but also underscores the importance of adapting instructional strategies to diverse learning styles to enhance educational outcomes in higher education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.13.4.1841
Pages: 1841-1857
cloud_download 301
visibility 1394
0
Article Metrics
Views
301
Download
1394
Citations
Crossref
0

Scopus
0

...

This study addresses global concerns surrounding elementary students' science performance following the COVID-19, as a result of international tests such as Trends in International Mathematics and Science Study (TIMSS) highlight the ongoing challenges that urge the exploration of innovative educational approaches to improve science learning. This research employed gamification-assisted instruction and explored its impact on enhancing the understanding of science concepts and attitudes toward science class among fourth graders. The study adopted a quasi-experimental design and included an experimental group (ExG) that was taught using a gamification strategy and a control group (CoG) that was taught using a traditional method with a sample of 38 female elementary students from a public school in Jordan. Data were gathered using valid and reliable tools: the developed scientific concepts test and the Attitude Towards Science class measures. The ANCOVA analysis revealed that gamification significantly improves the acquisition of scientific concepts (η2=.208) and boosts a positive attitude toward science classes among elementary students (η2=.626). These findings encourage decision-makers to incorporate gamification into science teaching practices and methods.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.2.485
Pages: 485-500
cloud_download 209
visibility 1245
0
Article Metrics
Views
209
Download
1245
Citations
Crossref
0

Scopus
0

...

The use of technology in education aims to improve students' problem-solving skills so that they have the skills needed by 21st century society in dealing with various kinds of challenges and problems. This study was carried out aiming to obtain the characteristics of augmented reality-based learning media for mathematics learning in student problem-solving skill, and obtain the results of the average difference in the problem-solving abilities of junior high school students. This research and development (R&D) study, employing the (Analyze, Design, Develop, Implement, and Evaluate) ADDIE model, investigated Augmented Reality (AR)-based learning media for mathematics to enhance junior high school students' problem-solving skills. The aim was to identify characteristics of effective AR media and assess their impact on problem-solving abilities. Quantitative data, collected from student problem-solving tests, were analyzed using a t-test in SPSS. The AR media featured virtual manipulation, virtual measurement tools, and real-world problem exploration. While the experimental group using AR showed a higher average problem-solving score compared to the control group using Problem-Based Learning (PBL), the difference was not statistically significant (t (df) = 0.638, Cohen's d = 0.0876). This lack of significance, despite the higher mean, is likely due to a small sample size and the limited integration timeframe, coupled with pre-existing skill variations. Future research should address these limitations to further explore the potential of AR in mathematics education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.2.645
Pages: 645-660
cloud_download 165
visibility 612
0
Article Metrics
Views
165
Download
612
Citations
Crossref
0

Scopus
0

...

The aim of this research was to assess changes in secondary school students’ grades longitudinally, including the semester before the COVID-19 pandemic, the period of distance learning, and two semesters when students had returned to face-to-face learning. In this longitudinal study, n=263 Latvian students’ grades from the period of six semesters (autumn 2019 to spring 2022) were collected and analyzed for seven study subjects (mathematics, English, Latvian, biology, chemistry, physics, and literature), using Friedman’s ANOVA, and Wilcoxon test for comparison. Results show that grades increased for several study subjects during the beginning of the distance learning period (e.g., mathematics and Latvian). However, this initial increase diminished after students had returned to schools to study in-person, especially for the subjects of mathematics and Latvian (native language). Decreases in students’ grades after returning to face-to-face studies indicate possible accumulated negative long-term effects of distance learning. The dynamics of the grades differ in various study subjects (e.g., relative stability in chemistry, decrease in mathematics, Latvian, biology), thus justifying the approach to analyze each study subject or study field separately. This study gives insight into longitudinal changes in students’ academic achievement, following the same students throughout their whole secondary school period from 10th to 12th grade during the pandemic.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.2.693
Pages: 693-704
cloud_download 84
visibility 361
0
Article Metrics
Views
84
Download
361
Citations
Crossref
0

Scopus
0

A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education

augmented reality bibliometric collaboration mathematical education scopus database

Meria Ultra Gusteti , Edwin Musdi , Indang Dewata , Amran Md. Rasli


...

This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.723
Pages: 723-741
cloud_download 176
visibility 823
0
Article Metrics
Views
176
Download
823
Citations
Crossref
0

Scopus
0

...

This study aims to develop a competency framework for teaching natural science under the blended learning (BL) model for Natural Science education students at Thai Nguyen University of Education. Recognizing the increasing importance of BL in the context of modern education and the challenges teachers face during implementation, the modified Delphi method was employed to collect expert opinions, involving three rounds of surveys with 50 participants, including university lecturers and secondary school educational administrators. The research identifies seven core competency groups, including specialized knowledge, lesson design and evaluation competencies, classroom organization and management, student assessment and feedback, information technology competencies, experiment and simulation utilization in teaching, and basic knowledge of BL. The findings highlight the necessity of blending traditional teaching methods with modern technology to effectively implement the BL model, enhancing both the teaching process and students' learning outcomes. This framework is expected to serve as a crucial basis for teacher training universities to adjust their curricula and support educational administrators in fostering and enhancing the capacity of natural science teachers at the secondary level. This competency framework aims to support the professional development of Natural Science teachers and education students, ensuring their preparedness for the evolving demands of modern education. Furthermore, the study provides insights into the skills and knowledge that teachers need to acquire to adapt to the continuously evolving educational environment.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.981
Pages: 981-998
cloud_download 16
visibility 50
0
Article Metrics
Views
16
Download
50
Citations
Crossref
0

Scopus
0

...