logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS

'Artificial intelligence' Search Results

...

Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has significantly transformed educational management, specifically in self-directed learning (SDL). This study examines the factors influencing Indonesian higher education students' intention to adopt AIED tools for self-directed learning using a combination of the Theory of Planned Behavior (TPB) with additional theories. A total of 322 university students from diverse academic backgrounds participated in the structured survey. This study utilized machine learning it was Artificial Neural Networks (ANN) to analyze nine factors, including attitude (AT), subjective norms (SN), perceived behavioral control (PBC), optimism (OP), user innovativeness (UI), perceived usefulness (PUF), facilitating conditions (FC), perception towards ai (PTA), and intention (IT) with a total of 41 items in the questionnaire. The model demonstrated high predictive accuracy, with SN emerging as the most significant factor to IT, followed by AT, PBC, PUF, FC, OP, and PTA. User innovativeness was the least influential factor due to the lowest accuracy. This study provides actionable insights for educators, policymakers, and technology developers by highlighting the critical roles of social influence, supportive infrastructure, and student beliefs in shaping AIED adoption for self-directed learning (SDL). This research not only fills an important gap in the literature but also offers a roadmap for designing inclusive, student-centered AI learning environments that empower learners and support the future of SDL in digital education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.805
Pages: 805-828
cloud_download 84
visibility 462
0
Article Metrics
Views
84
Download
462
Citations
Crossref
0

Scopus
0

...

Integrating generative artificial intelligence (GenAI) in education has gained significant attention, particularly in flexible learning environments (FLE). This study investigates how students’ voluntary adoption of GenAI influences their perceived usefulness (PU), perceived ease of use (PEU), learning engagement (LE), and student-teacher interaction (STI). This study employed a structural equation modeling (SEM) approach, using data from 480 students across multiple academic levels. The findings confirm that voluntary GenAI adoption significantly enhances PU and PEU, reinforcing established technology acceptance models (TAM). However, PU did not directly impact LE at the latent level—an unexpected finding that underscores students’ engagement’s complex and multidimensional nature in AI-enriched settings. Conversely, PEU positively influenced LE, which in turn significantly predicted STI. These findings suggest that usability, rather than perceived utility alone, drives deeper engagement and interaction in autonomous learning contexts. This research advances existing knowledge of GenAI adoption by proposing a structural model that integrates voluntary use, learner engagement, and teacher presence. Future research should incorporate variables such as digital literacy, self-regulation, and trust and apply longitudinal approaches to better understand the evolving role of GenAI inequitable, human-centered education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.829
Pages: 829-845
cloud_download 67
visibility 456
0
Article Metrics
Views
67
Download
456
Citations
Crossref
0

Scopus
0

Intermediality in Student Writing: A Preliminary Study on The Supportive Potential of Generative Artificial Intelligence

artificial intelligence automated writing evaluation chatgpt intermedia transmedia

Zhadyra Smailova , Saule Abisheva , Кarlygash Zhapparkulova , Ainura Junissova , Khorlan Kaskabassova


...

The proliferating field of writing education increasingly intersects with technological innovations, particularly generative artificial intelligence (GenAI) resources. Despite extensive research on automated writing evaluation systems, no empirical investigation has been reported so far on GenAI’s potential in cultivating intermedial writing skills within first language contexts. The present study explored the impact of ChatGPT as a writing assistant on university literature students’ intermedial writing proficiency. Employing a quasi-experimental design with a non-equivalent control group, researchers examined 52 undergraduate students’ essay writings over a 12-week intervention. Participants in the treatment group harnessed the conversational agent for iterative essay refinement, while the reference group followed traditional writing processes. Utilizing a comprehensive four-dimensional assessment rubric, researchers analyzed essays in terms of relevance, integration, specificity, and balance of intermedial references. Quantitative analyses revealed significant improvements in the AI-assisted group, particularly in relevance and insight facets. The findings add to the research on technology-empowered writing learning.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.847
Pages: 847-857
cloud_download 48
visibility 363
0
Article Metrics
Views
48
Download
363
Citations
Crossref
0

Scopus
0

...

This study presents a comprehensive bibliometric and content analysis of research on autism and mathematics learning from 2010 to 2024. A total of 131 peer-reviewed articles were retrieved from the Web of Science (WoS) database using keywords such as autism, mathematics, learning, and intervention. Bibliometric analysis was conducted to quantitatively examine publication trends, leading authors, contributing countries, and co-authorship networks, offering a macroscopic overview of the field’s evolution. Visualisations generated using VOSviewer further illustrated keyword co-occurrence and thematic clustering. Complementing this, content analysis provided a qualitative synthesis of research themes and conceptual progressions across the literature. The findings revealed a clear thematic evolution. Early research (2010–2015) predominantly focused on behavioural interventions, structured instructional approaches, and basic numeracy development. Mid-phase studies (2016–2020) introduced inclusive pedagogies, social-emotional considerations, and differentiated instruction. Recent research (2021–2024) has shifted towards personalised, technology-enhanced instruction, Universal Design for Learning (UDL), and the integration of digital tools in mathematics education. Despite this growth, several gaps remain. Research remains limited in addressing cross-cultural diversity, long-term evaluations of digital interventions, and the adaptation of pedagogies in underrepresented regions. This study emphasises the need for future research to explore culturally responsive frameworks, the sustainability of technology uses, and equity in mathematics education for autistic learners.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.14.3.961
Pages: 961-979
cloud_download 17
visibility 44
0
Article Metrics
Views
17
Download
44
Citations
Crossref
0

Scopus
0

...