'Information literacy' Search Results
Views of Pupils and Their Teachers on the Challenges of Using Information and Communication Technologies to Create Animations in Fine Arts Classes
action research contemporary tools and media curriculum primary school problem and project method...
With the introduction of the new curriculum, primary school Croatian fine arts teachers faced many challenges. The fundamental problem, the lack of school lessons, is highlighted by the challenges of implementing problem and project work and integrating technology into the teaching process. Therefore, it is important to organise activities where pupils use modern tools and media for high-quality educational purposes. The animation was chosen as a fine arts technique that can fulfil these requirements. Qualitative action research was conducted in city Split in the school year 2023/2024. The 5th and 8th grade pupils (125) and their fine arts teachers (3) participated in the research. A total of 75.23% of respondents were positive about the occasional introduction of technology into fine arts classes. After completing the fine arts project, 77.98% of pupils stated that they now have the knowledge and skills to create an animation themselves, while 77% of pupils consider their digital stories to be interesting and original. All three fine arts teachers cite a lack of continuity due to the small number of lessons as a shortcoming. The results point to poor material conditions: overheating of old projectors, low-quality tablets, poor internet connection and lack of power sockets. The research has shown that there are discrepancies between the prescribed theoretical requirements for learning outcomes and the possibilities for their practical realisation. As a result, teachers need to take a keen interest and receive additional training to ensure that the projects designed are in line with the requirements of the curriculum.
Students’ Perceptions of Artificial Intelligence Integration in Higher Education
ai benefits ai in education digital literacy omani higher education student perceptions...
This study explores the impact of artificial intelligence (AI) integration on students' educational experiences. It investigates student perceptions of AI across various academic aspects, such as module outlines, learning outcomes, curriculum design, instructional activities, assessments, and feedback mechanisms. It evaluates the impact of AI on students' learning experiences, critical thinking, self-assessment, cognitive development, and academic integrity. This research used a structured survey distributed to 300 students through Microsoft Forms 365, yet the response rate was 29.67%. A structured survey and thematic analysis were employed to gather insights from 89 students. Thematic analysis is a qualitative method for identifying and analysing patterns or themes within data, providing insights into key ideas and trends. The limited response rate may be attributed to learners' cultural backgrounds, as not all students are interested in research or familiar with AI tools. The survey questions are about AI integration in different academic areas. Thematic analysis was used to identify patterns and themes within the data. Benefits such as enhanced critical thinking, timely feedback, and personalised learning experiences are prevalent. AI tools like Turnitin supported academic integrity, and platforms like ChatGPT and Grammarly were particularly valued for their utility in academic tasks. The study acknowledges limitations linked to the small sample size and a focus on undergraduate learners only. The findings suggest that AI can significantly improve educational experiences. AI provides tailored support and promotes ethical practices. This study recommends continued and expanded use of AI technologies in education while addressing potential implementation challenges.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
Determining Factors Influencing Indonesian Higher Education Students' Intention to Adopt Artificial Intelligence Tools for Self-Directed Learning Management
artificial intelligence artificial neural networks educational management intention self-directed learning...
Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has significantly transformed educational management, specifically in self-directed learning (SDL). This study examines the factors influencing Indonesian higher education students' intention to adopt AIED tools for self-directed learning using a combination of the Theory of Planned Behavior (TPB) with additional theories. A total of 322 university students from diverse academic backgrounds participated in the structured survey. This study utilized machine learning it was Artificial Neural Networks (ANN) to analyze nine factors, including attitude (AT), subjective norms (SN), perceived behavioral control (PBC), optimism (OP), user innovativeness (UI), perceived usefulness (PUF), facilitating conditions (FC), perception towards ai (PTA), and intention (IT) with a total of 41 items in the questionnaire. The model demonstrated high predictive accuracy, with SN emerging as the most significant factor to IT, followed by AT, PBC, PUF, FC, OP, and PTA. User innovativeness was the least influential factor due to the lowest accuracy. This study provides actionable insights for educators, policymakers, and technology developers by highlighting the critical roles of social influence, supportive infrastructure, and student beliefs in shaping AIED adoption for self-directed learning (SDL). This research not only fills an important gap in the literature but also offers a roadmap for designing inclusive, student-centered AI learning environments that empower learners and support the future of SDL in digital education.
Synergy of Voluntary GenAI Adoption in Flexible Learning Environments: Exploring Facets of Student-Teacher Interaction Through Structural Equation Modeling
flexible learning environments generative artificial intelligence adoption structural equation modeling student-teacher interaction technology acceptance...
Integrating generative artificial intelligence (GenAI) in education has gained significant attention, particularly in flexible learning environments (FLE). This study investigates how students’ voluntary adoption of GenAI influences their perceived usefulness (PU), perceived ease of use (PEU), learning engagement (LE), and student-teacher interaction (STI). This study employed a structural equation modeling (SEM) approach, using data from 480 students across multiple academic levels. The findings confirm that voluntary GenAI adoption significantly enhances PU and PEU, reinforcing established technology acceptance models (TAM). However, PU did not directly impact LE at the latent level—an unexpected finding that underscores students’ engagement’s complex and multidimensional nature in AI-enriched settings. Conversely, PEU positively influenced LE, which in turn significantly predicted STI. These findings suggest that usability, rather than perceived utility alone, drives deeper engagement and interaction in autonomous learning contexts. This research advances existing knowledge of GenAI adoption by proposing a structural model that integrates voluntary use, learner engagement, and teacher presence. Future research should incorporate variables such as digital literacy, self-regulation, and trust and apply longitudinal approaches to better understand the evolving role of GenAI inequitable, human-centered education.
Intermediality in Student Writing: A Preliminary Study on The Supportive Potential of Generative Artificial Intelligence
artificial intelligence automated writing evaluation chatgpt intermedia transmedia...
The proliferating field of writing education increasingly intersects with technological innovations, particularly generative artificial intelligence (GenAI) resources. Despite extensive research on automated writing evaluation systems, no empirical investigation has been reported so far on GenAI’s potential in cultivating intermedial writing skills within first language contexts. The present study explored the impact of ChatGPT as a writing assistant on university literature students’ intermedial writing proficiency. Employing a quasi-experimental design with a non-equivalent control group, researchers examined 52 undergraduate students’ essay writings over a 12-week intervention. Participants in the treatment group harnessed the conversational agent for iterative essay refinement, while the reference group followed traditional writing processes. Utilizing a comprehensive four-dimensional assessment rubric, researchers analyzed essays in terms of relevance, integration, specificity, and balance of intermedial references. Quantitative analyses revealed significant improvements in the AI-assisted group, particularly in relevance and insight facets. The findings add to the research on technology-empowered writing learning.