' common errors' Search Results
Misconceptions in Rate of Reaction and their Impact on Misconceptions in Chemical Equilibrium
impact misconception rate of reaction chemical equilibrium...
Descriptive correlational research was conducted to discover misconceptions on Rate of Reaction (RR) that impact on Chemical Equilibrium (CE) misconceptions. This research was conducted to 245 eleventh-grade students of High School in Gowa, South Sulawesi, Indonesia, that have been studied the RR and CE topics. Misconceptions data were collected using three-tier tests and semi-structured interviews. The data were analyzed using descriptive and correlational analysis. Description of RR misconceptions that impact on CE misconceptions are determined with the percentage of students who consistently experience misconceptions about RR and CE. There were six misconceptions in RR that have an impact on CE, which are: Misconceptions related to changes in the reaction rate with time; The effect of temperature on the rate of reaction; The effect of adding catalysts to the activation energy; and the mathematical affect relating to the rate of reaction and number of moles. Misconceptions in RR and CE have 0.39 correlation coefficient, based on Spearman's formula. These results indicate that the impact of misconception in RR on CE is moderate. This study suggests that education practitioners should eliminate the misconception of prerequisite concepts before teaching the next related concepts.
Eighth Grade Students’ Misconceptions and Errors in Mathematics Learning in Nepal
mathematical conceptions misconceptions in mathematics students’ errors in mathematics nepal...
This paper explores misconceptions and errors (M/Es) of eighth-grade students in Nepal with a quasi-experimental design with nonequivalent control and experimental groups. The treatment was implemented with teaching episodes based on different remedial strategies of addressing students' M/Es. Students of control groups were taught under conventional teaching-learning method, whereas experimental groups were treated with a guided method to treat with misconceptions and errors. The effectiveness of treatment was tested at the end of the intervention. The results showed that the new guided treatment approach was found to be significant to address students' M/Es. Consequently, the students of experimental groups made significant progress in dealing with M/Es in mathematical problem-solving at conceptual, procedural, and application levels.
Identifying and Correcting Students’ Misconceptions in Defining Angle and Triangle
angle and triangle cause common errors misconception correction...
Misconceptions are one of the biggest obstacles in learning mathematics. This study aimed to investigate students’ common errors and misunderstandings they cause when defining the angle and the triangle. In addition, we investigated the metacognition/ drawing/ writing/ intervention (MDWI) strategy to change students’ understanding of the wrong concepts to the correct ones. A research design was used to achieve this goal. It identified and solved the errors in the definition of angle and triangle among first-year students in the Department of Mathematics Education at an excellent private college in Mataram, Indonesia. The steps were as follows: A test instrument with open-ended questions and in-depth interviews were used to identify the errors, causes, and reasons for the students’ misconceptions. Then, the MDWI approach was used to identify a way to correct these errors. It was found that students generally failed in interpreting the concept images, reasoning, and knowledge connection needed to define angles and triangles. The MDWI approach eliminated the misconceptions in generalization, errors in concept images, and incompetence in linking geometry features.
Teachers’ Topic-Specific Pedagogical Content Knowledge: A Driver in Understanding Graphs in Dynamics of Market
dynamics of market economics teachers graphs topic-specific pedagogical content knowledge...
Understanding graphs in the dynamics of market (DM) is a challenge to learners; its teaching demands a specific kind of teacher’s knowledge. This study aims to examine the topic-specific pedagogical content knowledge (TSPCK) of experienced economics teachers in teaching graphs in DM to enhance learners’ understanding of the topic. It reports using a qualitative approach underpinned by the TSPCK framework for teaching specific topics developed by Mavhunga. Data were collected through classroom observations and analyzed thematically using a case study of two economics teachers. The study revealed that adopting a step-by-step approach and the use of worked graphical examples promote an understanding of graphs in DM. It also established that active learning is preferable to the predominant chalk-and-talk (lecture) method of teaching graphs in DM. The study proposed a Dynamics of Market Graphical Framework (DMG-Framework) to enable teachers, particularly pre-service teachers in lesson delivery, to enhance learners’ understanding of graphs in DM. The result of this study will broaden the international view in the teaching of graphs in DM.
Curiosity and Digital Stories: Exploring Preschoolers’ Behaviors
child-computer interaction curiosity measurement digital stories preschool age...
Given curiosity’s fundamental role in motivation and learning and considering the widespread use of digital stories as educational tools from the preschool age, we pursued measuring preschoolers’ curiosity when interacting with digital stories. Using 129 toddlers and preschoolers as a sample, three groups (one for each class) were given different versions of the same digital story to listen to: interactive, non-interactive, and animated. Toddlers' verbal and nonverbal behaviors were utilized to quantify curiosity as a condition brought on by the app. The participants' verbal and nonverbal behaviors were recorded during the digital reading aloud. Every child's data was encoded at one-minute intervals to examine concurrent behavior, and the results were then compiled. The findings show that interactive presentation formats encourage more touching and language use but less noise production and that interaction and the creative use of hot spots in digital illustrations are key elements in piquing viewers' curiosity while contributing to the strengthening of the engagement to the activity and the cultivation of critical thinking, creativity, and imagination.