' mental rotation' Search Results
How In-Service Teachers Perceive Neuroscience as Connected to Education: An Exploratory Study
teaching learning educational neuroscience teachers...
This exploratory study is concerned about the extent to which a sample of 163 pre-school, primary and secondary Brazilian school teachers, expressed their opinion on how neuroscience might help their teaching and pupils´ learning. Evaluation instruments for Brazilian pupils were analysed. Two questionnaires were completed by the teachers. Results of a quantitative analysis indicated that in general teachers believe that neuroscience may contribute to the teaching and learning of their subject matter. An outline for an elective neuroscience and education course is presented. Educational implications are discussed.
10
An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas
chemical structural formulas event-related potentials mental rotation rotation-related negativity...
The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also administered for data collection. Eighteen university students majoring in chemistry were recruited. In the ERP experiments, the participants were required to identify 2D figures, 2D chemical structural formulas, 3D objects and 3D chemical structural formulas. The contours of 2D figures are similar to those of 2D chemical structural formulas, but they contain no content knowledge. Likewise, the contours of 3D objects are similar to 3D chemical structural formulas without content knowledge. The results showed that all students used similar strategies of mental rotation in identifying 2D figures, 3D objects and 3D chemical structural formulas. However, the high-achieving students used different strategies in identifying 2D figures and chemical structural formulas, while the low-achieving students tended to use similar strategies of mental rotation in identifying both 2D figures and chemical structural formulas. The results indicate that some of the difficulties in identifying 2D chemical structural formulas that students encounter are due to their inappropriate strategies of mental rotation.
10
Virtual Mathematics Kits (VMK): The Value of Spatial Orientation on It
spatial orientation virtual mathematics kits digital media extracurricular activities...
The purposes of the current study were to develop students' spatial orientation skills using Virtual Mathematics Kits (VMK) and to evaluate VMK as a form of digital media in terms of spatial orientation. This study involved 42 lower-class and 47 higher-class elementary school students as the intervention group and 36 lower-class and 41 higher-class students as the control group. The intervention group was administered spatial orientation activities for 10 weeks. These activities were performed using a VMK to facilitate solving spatial problems. In the end of activities, spatial orientation instruments administered to compare spatial orientation ability on each group. The findings of this study, spatial orientation activities using a VMK improved students' spatial orientation skills. More specific, VMK provides more significant effect on higher-class students. Finally, VMK allows students to explore many ideas and perspectives to solve various spatial problems. VMK can be used as a digital media that helps students to develop spatial reasoning.
Measuring Students' Curiosity Character Using Confirmatory Factor Analysis
students curiosity confirmatory factor analysis...
This study aims to test proving the scale of measuring the character of students' curiosity using confirmatory factor analysis. This study uses a quantitative approach. The sample used was 325 randomly selected participants. The variable examined in this study is the character of curiosity. The curiosity variable is focused on elementary school students. In this study, this variable was measured by four indicators and 16 measuring items. The four indicators include: paying attention, taking notes, asking questions, and comparing. Data collection was carried out by distributing curiosity questionnaires to participants. The data analysis technique used was confirmatory factor analysis. The reliability analysis used was the composite score reliability analysis. The results of the study concluded that the constituent indicators of the latent variables of students' curiosity show that all loading factor values have a significant effect on the latent variables in the first order confirmatory factor analysis (CFA). Meanwhile, in the second order CFA, the variable of curiosity, the biggest contribution was the indicators compare. This student curiosity assessment model has fulfilled the goodness of fit aspect of the model and has been reliable based on construct reliability. This study recommends a scale measuring elementary school students' curiosity.
The Spatial Thinking Process of the Field-Independent Students based on Action-Process-Object-Schema Theory
apos theory cognitive style field-independent spatial thinking...
Spatial thinking has roles to facilitate learners to remember, understand, reason, and communicate objects and the connections among objects that are represented in space. This research aims to analyze the spatial thinking process of students in constructing new knowledge seen from the field-independent cognitive style learners based on Action-Process-Object-Schema (APOS) theory. APOS theory is used to explore spatial thinking processes which consist of mental structures of action, process, object, and schema. This research is qualitative research with an exploratory method. It provided the students' opportunity to solve problems alternately until the method found the most appropriate subjects for the research objectives. The subjects were 2 students of Mathematics Education in the fourth semester of Universitas Muria Kudus Indonesia. The data collection techniques were started by distributing the validated and reliable spatial thinking questions, the cognitive style question, and the interview. The applied data analysis consisted of data reduction, presentation, and conclusion. The findings showed (1) spatial thinking process of holistic-external representation typed learners were indicated by the representative thinking element, abstract-illustrative figure expression to communicate and complete the tasks correctly, (2) spatial thinking process of the holistic-internal representation typed learners were indicated by the representative means, having ideas, connecting with the previous knowledge in the forms of symbols and numbers, and finding the final results correctly although incomplete.
Development of a Survey to Assess Conceptual Understanding of Quantum Mechanics among Moroccan Undergraduates
conceptual understanding learning difficulties quantum mechanics teaching/learning...
We developed a Quantum Mechanics Conceptual Understanding Survey (QMCUS) in this study. The survey was conducted using a quantitative methodology. A multiple-choice survey of 35 questions was administered to 338 undergraduate students. Three experienced quantum mechanics instructors examined the validity of the survey. The reliability of our survey was measured using Cronbach's alpha, the Fergusson delta index, the discrimination index, and the point biserial correlation coefficient. These indices showed that the developed survey is reliable. The statistical analysis of the students' results using SPSS shows that the scores obtained by the students have a normal distribution, around the score of 7.14. The results of the t-test show that the students' scores are below the required threshold, which means that it is still difficult for the students to understand the concepts of quantum mechanics. The obtained results allow us to draw some conclusions. The students' difficulties in understanding the quantum concepts are due to the nature of these concepts; they are abstract and counterintuitive. In addition, the learners did not have frequent contact with the subatomic world, which led them to adopt misconceptions. Moreover, students find it difficult to imagine and conceptualize quantum concepts. Therefore, subatomic phenomena are still explained with classical paradigms. Another difficulty is the lack of prerequisites and the difficulties in using the mathematical formalism and its translation into Dirac notation.
Development and Validation of a Concept Inventory for Interpreting Kinematics Graphs in the Tanzanian Context
concept inventory kinematics graphs physics teachers tanzania context...
This paper discusses the development and validation of a concept inventory for interpreting kinematics graphs in the Tanzanian context. The study involved 61 participants comprising physics pre-service teachers, secondary school teachers, diploma college tutors, and a university lecturer from Tanzania. We developed 25 multiple-choice questions for interpreting kinematics graphs. The different steps in the development process used are selecting the topic, setting objectives, constructing questions, validating questions, and reliability testing. We carried out descriptive and inferential statistical analysis by using Statistical Package for Social Science (SPSS) version 22 followed by item analysis for pre-and post-piloting. Findings revealed normal distribution scores with a mean and standard deviation of 39.28±10.893 for pre-piloting and 40.16±8.08 for post-piloting. It also revealed no significant difference between pre-and post-piloting results with a p-value of 0.414. In addition, correlation coefficients for test re-test reliability were .783 and .878 for single and average measures respectively. Moreover, item analysis in terms of difficulty index, discrimination index, and distractor efficiency agreed with the published standards. Based on these findings, the study recommends the use of developed and validated kinematics graphs concept inventory by physics educators in both research and classroom instructions in the Tanzanian context.
Digital Puzzle Worksheet for Identifying Metacognition Level of Students: A Study of Gender Differences
contextual math problem digital puzzle worksheet metacognition level primary school...
Digital puzzle worksheet (DPW) is innovative teaching material designed using open-source software such as Canva and Liveworksheets. Subsequently, puzzle games in the form of questions can improve problem-solving skills by engaging in metacognitive processes. This research used a case study method to describe the impact of applying the DPW to identify the metacognition levels of students through the assignment of contextual maths problems. The source of informants was third-grade elementary school students in West Java, Indonesia. Test instruments, observation sheets, and interviews were used, while data analysis adopted an iterative model. Furthermore, the method and time triangulation increased confidence in the resulting conclusions. The results showed that male students were at the metacognitive level of ‘strategic use’ and ‘aware use’ for females, based on the characteristics of the observed metacognitive level. The most prominent feature was identifying and determining problem-solving strategies with metacognitive awareness. The reaction of students to the DPW improved problem-solving abilities, expanded conceptual understanding, and enhanced digital technology competence. Therefore, this experience was applied when solving contextual mathematical problem assignments.
The Impact of Educational Robotics on Cognitive Outcomes in Primary Students: A Meta-Analysis of Recent Studies
cognitive outcomes educational robotics elementary education meta-analysis primary students...
In recent years, educational robotics has gained ground in educational policy around the world, and primary education is no exception. However, there has not yet been a thorough synthesis of methodologically appropriate empirical research on the effects of robotics upon cognitive performance among primary school students, which this paper attempted to do. Following literature screening, a total of eight studies published between 2018 and 2022 with a sample size of 567 children met inclusion criteria and were meta-analyzed. Resultantly, a medium aggregate effect size in favor of robotics experiments emerged (standardized mean difference of .641), which was significantly higher compared to non-robotics learning (p <.01). No between-study heterogeneity was detected. Subgroup analysis revealed a slightly larger overall effect for interventions on first- to third-graders rather than those in grades 4-6. Additionally, the analysis indicates that in order to enhance cognitive abilities in primary students, robotics interventions should be no longer than four weeks and involve robot construction. Based on the findings, implications, and suggestions are outlined for future research and practice.