'language in mathematics' Search Results
Optimization of Critical Thinking by Empowering Collaboration and Communication Skills through Information Literacy-Based E-Books: In STEM integrated Problem-Based Learning
critical thinking collaboration communication information literacy stem...
This study aimed to optimize critical thinking by empowering reflective and impulsive students' collaboration, communication, and information literacy skills through information literacy-oriented e-books in STEM-integrated problem-based learning (PBL). The research method used was a descriptive explorative approach. The study subjects consisted of five reflective students and five impulsive students. The measurement of cognitive style used the Matching Familiar Figure Test (MFFT) instrument. Collaboration skills were assessed through observation sheets, critical thinking and communication skills were assessed through student worksheets based on problem-solving tasks, and information literacy was assessed through a questionnaire. The study found that reflective students excelled in critical thinking and information literacy, while impulsive students demonstrated superior collaboration skills. As for communication skills, reflective and impulsive students have different advantages for each indicator of communication skills. This study can conclude that implementing information literacy-oriented e-books through STEM-integrated PBL can optimize reflective and impulsive students' critical thinking, collaboration, communication, and information literacy skills. The implication of this study is the importance of integrating 21st century skills holistically in learning practices, especially in the digital era, to prepare the younger generation to face the challenges of the 21st century.
Learning to Teach AI: Design and Validation of a Questionnaire on Artificial Intelligence Training for Teachers
artificial intelligence continuous training professional recycling ict training courses...
This study aims to design, produce, and validate an information collection instrument to evaluate the opinions of teachers at non-university educational levels on the quality of training in artificial intelligence (AI) applied to education. The questionnaire was structured around five key dimensions: (a) knowledge and previous experience in AI, (b) perception of the benefits and applications of AI in education, (c) AI training, and (d) expectations of the courses and (e) impact on teaching practice. Validation was performed through expert judgment, which ensured the internal validity and reliability of the instrument. Statistical analyses, which included measures of central tendency, dispersion, and internal consistency, yielded a Cronbach's alpha of .953, indicating excellent reliability. The findings reveal a generally positive attitude towards AI in education, emphasizing its potential to personalize learning and improve academic outcomes. However, significant variability in teachers' training experiences underscores the need for more standardized training programs. The validated questionnaire emerges as a reliable tool for future research on teachers' perceptions of AI in educational contexts. From a practical perspective, the validated questionnaire provides a structured framework for assessing teacher training programs in AI, offering valuable insights for improving educational policies and program design. It enables a deeper exploration of educational AI, a field still in its early stages of research and implementation. This tool supports the development of targeted training initiatives, fostering more effective integration of AI into educational practices.
The Impact of Gamification-Assisted Instruction on the Acquisition of Scientific Concepts and Attitudes Towards Science Class Among Elementary School Students
attitude toward science classes elementary students gamification scientific concept...
This study addresses global concerns surrounding elementary students' science performance following the COVID-19, as a result of international tests such as Trends in International Mathematics and Science Study (TIMSS) highlight the ongoing challenges that urge the exploration of innovative educational approaches to improve science learning. This research employed gamification-assisted instruction and explored its impact on enhancing the understanding of science concepts and attitudes toward science class among fourth graders. The study adopted a quasi-experimental design and included an experimental group (ExG) that was taught using a gamification strategy and a control group (CoG) that was taught using a traditional method with a sample of 38 female elementary students from a public school in Jordan. Data were gathered using valid and reliable tools: the developed scientific concepts test and the Attitude Towards Science class measures. The ANCOVA analysis revealed that gamification significantly improves the acquisition of scientific concepts (η2=.208) and boosts a positive attitude toward science classes among elementary students (η2=.626). These findings encourage decision-makers to incorporate gamification into science teaching practices and methods.
Changes in Secondary School Students’ Grades From 2019 to 2022: A Longitudinal Study in the Context of the COVID-19 Pandemic
academic achievement secondary school distance learning face-to-face learning longitudinal data...
The aim of this research was to assess changes in secondary school students’ grades longitudinally, including the semester before the COVID-19 pandemic, the period of distance learning, and two semesters when students had returned to face-to-face learning. In this longitudinal study, n=263 Latvian students’ grades from the period of six semesters (autumn 2019 to spring 2022) were collected and analyzed for seven study subjects (mathematics, English, Latvian, biology, chemistry, physics, and literature), using Friedman’s ANOVA, and Wilcoxon test for comparison. Results show that grades increased for several study subjects during the beginning of the distance learning period (e.g., mathematics and Latvian). However, this initial increase diminished after students had returned to schools to study in-person, especially for the subjects of mathematics and Latvian (native language). Decreases in students’ grades after returning to face-to-face studies indicate possible accumulated negative long-term effects of distance learning. The dynamics of the grades differ in various study subjects (e.g., relative stability in chemistry, decrease in mathematics, Latvian, biology), thus justifying the approach to analyze each study subject or study field separately. This study gives insight into longitudinal changes in students’ academic achievement, following the same students throughout their whole secondary school period from 10th to 12th grade during the pandemic.
A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education
augmented reality bibliometric collaboration mathematical education scopus database...
This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
Determining Factors Influencing Indonesian Higher Education Students' Intention to Adopt Artificial Intelligence Tools for Self-Directed Learning Management
artificial intelligence artificial neural networks educational management intention self-directed learning...
Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has significantly transformed educational management, specifically in self-directed learning (SDL). This study examines the factors influencing Indonesian higher education students' intention to adopt AIED tools for self-directed learning using a combination of the Theory of Planned Behavior (TPB) with additional theories. A total of 322 university students from diverse academic backgrounds participated in the structured survey. This study utilized machine learning it was Artificial Neural Networks (ANN) to analyze nine factors, including attitude (AT), subjective norms (SN), perceived behavioral control (PBC), optimism (OP), user innovativeness (UI), perceived usefulness (PUF), facilitating conditions (FC), perception towards ai (PTA), and intention (IT) with a total of 41 items in the questionnaire. The model demonstrated high predictive accuracy, with SN emerging as the most significant factor to IT, followed by AT, PBC, PUF, FC, OP, and PTA. User innovativeness was the least influential factor due to the lowest accuracy. This study provides actionable insights for educators, policymakers, and technology developers by highlighting the critical roles of social influence, supportive infrastructure, and student beliefs in shaping AIED adoption for self-directed learning (SDL). This research not only fills an important gap in the literature but also offers a roadmap for designing inclusive, student-centered AI learning environments that empower learners and support the future of SDL in digital education.
Building a Competency Framework for Teaching Natural Science Under the Blended Learning Model for University Education Students: A Delphi Study
blended learning competency framework delphi method natural science education teacher training...
This study aims to develop a competency framework for teaching natural science under the blended learning (BL) model for Natural Science education students at Thai Nguyen University of Education. Recognizing the increasing importance of BL in the context of modern education and the challenges teachers face during implementation, the modified Delphi method was employed to collect expert opinions, involving three rounds of surveys with 50 participants, including university lecturers and secondary school educational administrators. The research identifies seven core competency groups, including specialized knowledge, lesson design and evaluation competencies, classroom organization and management, student assessment and feedback, information technology competencies, experiment and simulation utilization in teaching, and basic knowledge of BL. The findings highlight the necessity of blending traditional teaching methods with modern technology to effectively implement the BL model, enhancing both the teaching process and students' learning outcomes. This framework is expected to serve as a crucial basis for teacher training universities to adjust their curricula and support educational administrators in fostering and enhancing the capacity of natural science teachers at the secondary level. This competency framework aims to support the professional development of Natural Science teachers and education students, ensuring their preparedness for the evolving demands of modern education. Furthermore, the study provides insights into the skills and knowledge that teachers need to acquire to adapt to the continuously evolving educational environment.