' science process skills' Search Results
The Impact of Gamification-Assisted Instruction on the Acquisition of Scientific Concepts and Attitudes Towards Science Class Among Elementary School Students
attitude toward science classes elementary students gamification scientific concept...
This study addresses global concerns surrounding elementary students' science performance following the COVID-19, as a result of international tests such as Trends in International Mathematics and Science Study (TIMSS) highlight the ongoing challenges that urge the exploration of innovative educational approaches to improve science learning. This research employed gamification-assisted instruction and explored its impact on enhancing the understanding of science concepts and attitudes toward science class among fourth graders. The study adopted a quasi-experimental design and included an experimental group (ExG) that was taught using a gamification strategy and a control group (CoG) that was taught using a traditional method with a sample of 38 female elementary students from a public school in Jordan. Data were gathered using valid and reliable tools: the developed scientific concepts test and the Attitude Towards Science class measures. The ANCOVA analysis revealed that gamification significantly improves the acquisition of scientific concepts (η2=.208) and boosts a positive attitude toward science classes among elementary students (η2=.626). These findings encourage decision-makers to incorporate gamification into science teaching practices and methods.
A Step-by-Step Approach to Systematic Reviews in Educational Research
educational research evidence-based design prisma systematic reviews...
This article provides a comprehensive guide to conducting and documenting systematic reviews (SRs) in educational research. While SRs are increasingly recognized for their value in synthesizing and evaluating literature on specific research questions or topics, there remains a notable scarcity of research-based papers that guide their development within the field of education. Systematic reviews, distinguished from traditional literature reviews by their standardized processes—including systematic searching, selection, and critical appraisal of relevant studies—offer a more accurate and comprehensive understanding of the research landscape by integrating findings from multiple sources. This paper underscores the importance of adhering to established methodologies and guidelines to ensure the quality and reliability of SRs. Essential elements discussed include defining research questions, developing search strategies, applying inclusion and exclusion criteria, and synthesizing results. The paper also highlights the role of frameworks such as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) in enhancing transparency and methodological rigor. By following this structured approach, researchers can produce systematic reviews that provide valuable insights into educational practices and policies, thereby supporting evidence-based decision-making and advancing the field of education.
Identifying Key Variables of Student Dropout in Preschool, Primary, Secondary, and High School Education: An Umbrella Review Approach
bibliometrics cause and effect explanatory variable school dropouts systematic review...
This umbrella review aimed to synthesize variables that explain dropout among students in preschool, primary, secondary, and high school education. The study focused on peer-reviewed articles indexed in SCOPUS, Web of Science, and ERIC, identifying five systematic reviews that provided comprehensive insights. Key findings revealed individual factors, such as insufficient parental support, emotional and behavioral challenges, and substance use, play significant roles in influencing student dropout. Socioeconomic factors, including poverty, financial constraints, and social inequalities, were also identified as critical contributors. Additionally, institutional elements such as inadequate school infrastructure, insufficient teacher training, and a lack of culturally relevant resources emerged as barriers to student retention. This review highlights research gaps in political-legislative, sociocultural, and family determinants, longitudinal analyses, dropout interventions’ long-term effectiveness, and marginalized populations’ representation, limiting a comprehensive understanding of student dropout and effective policy development. Recommendations include targeted policies and interventions that foster inclusive and supportive educational environments, reduce inequities, and improve access to resources to minimize dropout rates among students in preschool, primary, secondary, and high school education.
Effect of STEAM Project-Based Learning on Engineering Students’ 21st Century Skills
steam steam education steam project-based learning 21st century skills...
STEM/STEAM education is an interdisciplinary pedagogical approach that cultivates skills in science (S), technology (T), engineering (E), arts (A), and mathematics (M) while also fostering 21st century skills like teamwork, problem-solving, critical thinking, and creativity in learners. Enhancing STEAM and 21st century skills for engineering students facilitates their swift adaptation to STEM/STEAM employment demands in the 4.0 industrial revolution and the ongoing digital transformation in Vietnam. This study aims to investigate the effect of STEAM project-based learning on the 21st century skills of 47 mechanical engineering technology students at a public university in Vietnam. The findings of a one-group pretest-posttest design and an analysis of engineering student groups’ STEAM project-based learning products revealed that there was a significant improvement in students' 21st century skills at a 95% confidence level. Among the three 21st century skills studied, engineering students’ collaboration skill showed a moderate effect size, while problem-solving and creative thinking skills demonstrated a large effect size after implementing STEAM project-based learning in the “Workplace Skills” course. Some significant limitations were identified, including (a) the lack of a comparison group, which may have influenced the difference between the pretest and posttest; and (b) the sustainability of 21st century skills developed through STEAM project-based learning in the “Workplace Skills” course was not investigated. Therefore, studying the effect of other factors on engineering students’ 21st century skills and exploring their sustainability were main recommendations for further research.
A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education
augmented reality bibliometric collaboration mathematical education scopus database...
This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
Interdisciplinary Mathematics Education: A Systematic Review
interdisciplinary approach interdisciplinary research mathematics education stem education systematic review...
Research in mathematics education and interdisciplinarity is varied and extensive, covering multiple approaches that reflect a growing interest in this type of perspective. The objective of this study is to systematize the findings of research on interdisciplinary mathematics education published between 2019 and 2024. The review was carried out following the guidelines of the PRISMA statement, allowing us to identify 49 articles published in journals indexed in the Web of Science (WOS) and Scopus databases. Subsequently, a content analysis was carried out to identify methodological and theoretical aspects present in the studies reviewed, such as methodology employed, education level of participants, disciplines integrated with mathematics, and types of interdisciplinary tasks proposed. Additionally, four main research themes were identified: (a) understanding of interdisciplinarity; (b) pedagogical strategies for interdisciplinary development in mathematics education; (c) interdisciplinarity for the development of mathematical skills; and (d) professional development of mathematics teachers. The results reveal a sustained increase in the number of publications, which reflects a growing interest in the interdisciplinary approach in mathematics education. Finally, several challenges and opportunities are highlighted for future research, including the need to develop an interdisciplinary teacher training model, the creation of pedagogical strategies that promote greater interconnection between disciplines, and the need to carry out more studies focused on early childhood and primary education in this area.
Building a Competency Framework for Teaching Natural Science Under the Blended Learning Model for University Education Students: A Delphi Study
blended learning competency framework delphi method natural science education teacher training...
This study aims to develop a competency framework for teaching natural science under the blended learning (BL) model for Natural Science education students at Thai Nguyen University of Education. Recognizing the increasing importance of BL in the context of modern education and the challenges teachers face during implementation, the modified Delphi method was employed to collect expert opinions, involving three rounds of surveys with 50 participants, including university lecturers and secondary school educational administrators. The research identifies seven core competency groups, including specialized knowledge, lesson design and evaluation competencies, classroom organization and management, student assessment and feedback, information technology competencies, experiment and simulation utilization in teaching, and basic knowledge of BL. The findings highlight the necessity of blending traditional teaching methods with modern technology to effectively implement the BL model, enhancing both the teaching process and students' learning outcomes. This framework is expected to serve as a crucial basis for teacher training universities to adjust their curricula and support educational administrators in fostering and enhancing the capacity of natural science teachers at the secondary level. This competency framework aims to support the professional development of Natural Science teachers and education students, ensuring their preparedness for the evolving demands of modern education. Furthermore, the study provides insights into the skills and knowledge that teachers need to acquire to adapt to the continuously evolving educational environment.