'low cost microcontroller' Search Results
Developing a Low-Cost Microcontroller–Based Model for Teaching and Learning
arduino automobile low-cost microcontroller teaching and learning model technology education...
Recently, as low-cost microcontrollers such as those developed by Arduino and Raspberry Pi have become widely available, the term maker education has emerged as a hot topic in education. Teachers are increasingly using low-cost microcontrollers in their classes, but conducting a class that focuses on using a microcontroller may cause difficulties or problems, for the learner or for the instructor. To solve these problems, it was necessary to design a teaching and learning model for the use of low-cost microcontrollers to be applied at school sites. Accordingly, this study aimed to develop a teaching and learning model for using low-cost microcontrollers. As a result of this study, the author proposes a teaching and learning model that consists of six stages: topic selection, exploration of implementation methods, experimentation, production of teaching and learning materials, implementing lesson plans, and improvement. According to this procedure, teaching and learning materials were created and applied for the subject matter of a middle school unit on “Making Arduino Automobile.” The model developed in this study may provide a guideline for teachers who want to apply low-cost microcontrollers in their classes.
A Meta-Analysis of the Effects of Arduino-Based Education in Korean Primary and Secondary Schools in Engineering Education
arduino-based learning engineering education low-cost microcontroller meta-analysis...
The Arduino microcontroller enables ordinary people to perform professional tasks that only traditional engineering professionals could perform. Recently, several educational cases have been applied to primary and secondary schools, which is a desirable attempt to popularize engineering education. This study meta-analyzed the effects of Arduino-based education in primary and secondary schools in Korea from the perspective of engineering education. Accordingly, 16 academic journals and dissertations were selected that verified educational effects by Arduino-based education to primary and secondary students in Korea, and 31 effect sizes were confirmed. According to the results of this study, the overall average effect size was 0.656, which confirmed that Arduino-based education had a positive educational effect. Furthermore, this study calculated the effect size as measured by categorical and continuous variables such as school level, the inclusion of curriculum, giftedness, publication status, the programming language used, publication year, number of sessions, and number of students. Implications were suggested from the perspective of engineering education. This study is meaningful because it suggests the application of Arduino to primary and secondary schools in engineering education by confirming the positive educational effect of Arduino-based education.