'Autism' Search Results
Using Augmented Reality to Teach Digital Literacy Course to Primary School Children with Special Educational Needs
augmented reality digital literacy digital content inclusive education primary school...
Augmented reality technologies can create unique interactive learning environments for students with special educational needs that enrich the learning process and provide immediate feedback. This research analyzed the use of augmented reality in teaching digital literacy courses for primary school children with special educational needs. The study involved a quasi-experiment with participants using a mobile augmented reality application to assess its impacts on learning outcomes. The results showed the positive effects of augmented reality on student achievement. The results highlight the potential of augmented reality in inclusive education. In addition, the findings emphasize the importance of further research and development in this area and an increased use of augmented reality to improve the educational experience of students with disabilities. In light of the results, we conclude with recommendations for integrating augmented reality into educational programs and improving educational practices.
Applying Augmented Reality Technology in STEM Education: A Bibliometrics Analysis in Scopus Database
augmented reality bibliometrics scopus stem education...
Augmented reality offers diverse potential applications for STEM education, enabling students to engage directly with virtual elements in real-time and providing them with immersive, natural experiences. This study conducted a bibliometric analysis of articles on this topic on the Scopus database to determine some quantitative information, such as general information about publications, countries, institutions, authors with the most contributions, and key trends in applying augmented reality technology in STEM education. An analysis of 201 studies published from 2005 to 2023 using Biblioshiny software and VOSviewer reveals that the United States leads in the number of studies conducted on this issue. Kryvyi Rih National University, Ukraine, has the most studies. The authors who contributed the most studies with the most citations on this issue are Lindner, C. and Rienow, A. from Ruhr University Bochum, Germany. Two primary research trends emerge, focusing on how Augmented Reality technology is utilized, particularly in STEM fields like Chemistry, which combines learning forms with other learning support tools and media such as mobile applications. Secondly, integrating augmented reality and virtual reality technologies into STEM programs at the university level, design of games, and virtual tools. This study offers important data for researchers looking to explore future applications of augmented reality technology within STEM education.
Validation of Students' Green Behavior Instrument Based on Local Potential Using Structural Equation Modeling With Smart Partial Least Squares
instrument validation green behavior local potential structural equation modeling smart partial least squares...
This study aims to develop and validate a green behavior instrument based on local potential using structural equation modeling (SEM) with smart partial least squares (SmartPLS). The instrument consists of 40 statements covering five main indicators: environmental maintenance, waste reduction, saving natural resources, sustainable mobility and consumption, and community education. This study addresses a gap in existing research by creating a context-specific tool for assessing green behavior, incorporating local cultural and ecological factors. While prior studies emphasize global sustainability principles, they often overlook the significance of local practices and values, which are essential for effective environmental education. By integrating local potential, this instrument bridges global sustainability goals with regional contexts, enabling meaningful and practical student engagement. The instrument was validated through content validity testing, exploratory and confirmatory factor analyses, and construct validity and reliability testing using SEM with SmartPLS. The results indicate strong content validity, with content validity index (CVI) values ranging from .80 to .90. After analysis, 34 valid items were retained from the initial 40. This study contributes to the literature by developing an instrument that aligns with global sustainability goals while integrating local cultural practices and ecological contexts. It offers insights into how local knowledge enhances sustainability education, providing a holistic framework for assessing green behavior across diverse regions.
Learning to Teach AI: Design and Validation of a Questionnaire on Artificial Intelligence Training for Teachers
artificial intelligence continuous training professional recycling ict training courses...
This study aims to design, produce, and validate an information collection instrument to evaluate the opinions of teachers at non-university educational levels on the quality of training in artificial intelligence (AI) applied to education. The questionnaire was structured around five key dimensions: (a) knowledge and previous experience in AI, (b) perception of the benefits and applications of AI in education, (c) AI training, and (d) expectations of the courses and (e) impact on teaching practice. Validation was performed through expert judgment, which ensured the internal validity and reliability of the instrument. Statistical analyses, which included measures of central tendency, dispersion, and internal consistency, yielded a Cronbach's alpha of .953, indicating excellent reliability. The findings reveal a generally positive attitude towards AI in education, emphasizing its potential to personalize learning and improve academic outcomes. However, significant variability in teachers' training experiences underscores the need for more standardized training programs. The validated questionnaire emerges as a reliable tool for future research on teachers' perceptions of AI in educational contexts. From a practical perspective, the validated questionnaire provides a structured framework for assessing teacher training programs in AI, offering valuable insights for improving educational policies and program design. It enables a deeper exploration of educational AI, a field still in its early stages of research and implementation. This tool supports the development of targeted training initiatives, fostering more effective integration of AI into educational practices.
Developing Gross and Fine Motor Skills Using Sensory Integration in Children With Moderate Autism Spectrum Disorder
autism spectrum disorder fine motor skills gross motor skills sensory integration...
Sensory integration (SI)-based intervention programs aim to improve the motor performance of children with moderate autism spectrum disorder (MASD), which may contribute to the development of their gross and fine motor skills. This study aimed to explore the effectiveness of a SI-based training program in developing gross and fine motor skills in 70 children with MASD aged 6–9 years (M = 7.11, SD ± 1.19) and selected intentionally from a daycare center in Al-Ahsa in Saudi Arabia. The study used the quasi-experimental approach and followed the experimental design with two groups, which were randomly distributed and examined for equivalence. The study also used the Gross Motor Skills Scale (GMSS), the Fine Motor Skills Scale (FMSS), and the training program based on SI. The study found that the experimental group had significantly higher post-test scores in the GMSS and the FMSS than the control group, with these differences being statistically significant. However, no significant difference was observed between the post-test scores and the follow-up test scores within the experimental group, indicating stability in their performance over time. This indicates the effectiveness of the training program used in developing the targeted skills and the continuation of the training effect after the program’s application period. The study suggests that children should use SI-based training programs to enhance their motor skills.
Diorama: An Effective Approach to Reduce Social Withdrawal Behavior in Children With Autism Spectrum Disorder
autism spectrum disorder diorama social withdrawal behavior...
Children diagnosed with moderate autism spectrum disorder (MASD) exhibit a range of socially unacceptable behaviors, which notably include social withdrawal behavior (SWB); these individuals tend to disengage from various social contexts, consequently impeding their communication and social interaction capabilities. The primary objective of this research was to employ miniatures (diorama) as a methodological approach to construct semi-naturalistic scenarios for children with MASD that authentically represent their quotidian experiences and facilitate interaction, contributing to the alleviation of their SWB. The research sample comprised 21 children with MASD, aged between 6 and 9 years, who were enrolled at the Al-Jabr Institute in Al-Ahsa, Saudi Arabia. A quasi-experimental methodology was adopted to align with the research's inherent characteristics, using a three-group design. The instruments utilized included the Social Withdrawal Behavior Scale (SWBS) alongside a training program devised by the authors. The results showed a significant reduction in SWB among those children to whom the diorama program was applied. Results also indicated the continuation of this effect after the end of the diorama program period for two consecutive months. The outcomes encourage further implementation of the diorama methodology on more extensive samples and across a broader geographic scope within Saudi Arabia, thereby facilitating the generalization of the findings to the entire population of children diagnosed with MASD. Findings also encourage the enhancement of the diorama's role in forthcoming experimental inquiries to ascertain its efficacy in mitigating other socially maladaptive behaviors exhibited by children with MASD.
The Effect of Augmented Reality in Enhancing Basic Communication Skills in Children with Autism Spectrum Disorder
autism spectrum disorder augmented reality communication skills pecs primary education...
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by challenges in social communication and repetitive behaviors. The Picture Exchange Communication System (PECS) has been widely utilized to support communication in children with ASD by using picture cards to convey needs and responses. However, traditional PECS can be limited by its static nature and lack of immediate feedback. Recent technological advances, particularly Augmented Reality (AR), offer new avenues for enhancing these communication strategies. This study explores the integration of AR into PECS and its impact on improving basic communication skills, specifically answering questions and commenting, in children with ASD. The research involved a multiple baseline design with four participants aged 7-12 years, recruited from autism centers in Melaka, Malaysia. Results showed significant improvements in both the frequency and accuracy of responses and relevant commenting skills after the AR-based intervention. Answering skills improved by 83%, and commenting skills increased by 122%, with the average number of relevant comments rising from 3 (SD = 0.89) to 6.67 (SD = 2.25). Statistical analysis (paired t-test) revealed a significant effect (p = 0.00272). Compared to traditional methods, AR-based PECS accelerated the achievement of target communication skills. Future research should focus on larger sample sizes and explore long-term impacts to solidify these promising outcomes.
Tracing the Evolution of Autism Mathematics Learning: A Bibliometric Analysis
autism spectrum disorder (asd) bibliometric analysis content analysis mathematics learning...
This study presents a comprehensive bibliometric and content analysis of research on autism and mathematics learning from 2010 to 2024. A total of 131 peer-reviewed articles were retrieved from the Web of Science (WoS) database using keywords such as autism, mathematics, learning, and intervention. Bibliometric analysis was conducted to quantitatively examine publication trends, leading authors, contributing countries, and co-authorship networks, offering a macroscopic overview of the field’s evolution. Visualisations generated using VOSviewer further illustrated keyword co-occurrence and thematic clustering. Complementing this, content analysis provided a qualitative synthesis of research themes and conceptual progressions across the literature. The findings revealed a clear thematic evolution. Early research (2010–2015) predominantly focused on behavioural interventions, structured instructional approaches, and basic numeracy development. Mid-phase studies (2016–2020) introduced inclusive pedagogies, social-emotional considerations, and differentiated instruction. Recent research (2021–2024) has shifted towards personalised, technology-enhanced instruction, Universal Design for Learning (UDL), and the integration of digital tools in mathematics education. Despite this growth, several gaps remain. Research remains limited in addressing cross-cultural diversity, long-term evaluations of digital interventions, and the adaptation of pedagogies in underrepresented regions. This study emphasises the need for future research to explore culturally responsive frameworks, the sustainability of technology uses, and equity in mathematics education for autistic learners.