'mathematics achievement' Search Results
The Decline in Mastery Goal Orientation and Person-Environment Fit and the Preventive Effect of Classroom Community: Examining Transitions Using Latent Growth Curve Modelling
classroom community latent growth curve model mastery goal orientation motivation person-environment fit...
Students’ mastery goal orientation tends to decline over the course of compulsory school, especially after the transition to lower secondary school. According to stage-environment fit theory, secondary school is less accommodating to students' needs, interests, and abilities than primary school. In consequence, the perceived person-environment fit declines as well. It is assumed that a strong sense of classroom community in primary school can counteract a potential decline in both of these important individual aspects. Using data from the Swiss longitudinal research project WiSel (“Wirkungen der Selektion”; “Effects of Tracking”), we conducted a latent growth curve model (LGCM) to examine the correlation between the development of students' mastery goal orientation and the development of their person-environment fit during the transition from primary school to lower secondary school. Perceived classroom community was assumed to benefit from these developments. The results show that both mastery goal orientation and person-environment fit decrease during the transition to lower secondary school. A strong sense of classroom community in fifth grade leads to a smaller decline in both constructs. Implications for educational practice are discussed.
Curiosity and Digital Stories: Exploring Preschoolers’ Behaviors
child-computer interaction curiosity measurement digital stories preschool age...
Given curiosity’s fundamental role in motivation and learning and considering the widespread use of digital stories as educational tools from the preschool age, we pursued measuring preschoolers’ curiosity when interacting with digital stories. Using 129 toddlers and preschoolers as a sample, three groups (one for each class) were given different versions of the same digital story to listen to: interactive, non-interactive, and animated. Toddlers' verbal and nonverbal behaviors were utilized to quantify curiosity as a condition brought on by the app. The participants' verbal and nonverbal behaviors were recorded during the digital reading aloud. Every child's data was encoded at one-minute intervals to examine concurrent behavior, and the results were then compiled. The findings show that interactive presentation formats encourage more touching and language use but less noise production and that interaction and the creative use of hot spots in digital illustrations are key elements in piquing viewers' curiosity while contributing to the strengthening of the engagement to the activity and the cultivation of critical thinking, creativity, and imagination.
An Examination of Blended Learning in Higher Education Over a Two-Decade Period (2003-2022): Insights Derived From Scopus Database
bibliometric analysis blended learning higher education...
With the current rate of technological advancements, higher education institutions around the world are increasingly adopting a wide variety of technology-related approaches to instruction. One of the teaching strategies used on digital platforms that has been successfully and widely adopted in higher education institutions is blended learning (BL). The objective of this investigation is to provide a comprehensive examination of the research efforts on BL in the context of higher education (HE) over the past 20 years, including the rise in publications, the most cited scientific journals and sources, and the upcoming research topics. This paper uses bibliometric analysis with a dataset of 651 documents from Scopus data, including 638 authors from 95 countries published in 271 journal sources. The results of the study show that the top three countries for BL research in higher education are the United Kingdom, the United States, and Australia; the authors with the highest citation indexes are D. R. Garrison and B. Means, and the top two publishing sources are Education and Information Technologies and Internet and Higher Education. Based on the analysis, the main trends detected are (a) student participation and environment, (b) educational technology instructional innovation, (c) effective instructional strategies within the parameters of the COVID-19 pandemic, (d) effectiveness of evaluation in BL environments and (e) BL with Massive Open Online Courses (MOOCs) and Learning Management System (LMS) in HE. These findings offer meaningful insights to early career researchers who consult the publications and research lists above, as well as to policy makers who develop suitable BL in HE policies.
Text Comprehension as a Mediator in Solving Mathematical Reality-Based Tasks: The Impact of Linguistic Complexity, Cognitive Factors, and Social Background
experimental design language in mathematics linguistic complexity mediation analysis reality-based tasks...
Successfully solving reality-based tasks requires both mathematical and text comprehension skills. Previous research has shown that mathematical tasks requiring language proficiency have lower solution rates than those that do not, indicating increased difficulty through textual input. Therefore, it is plausible to assume that a lack of text comprehension skills leads to performance problems. Given that different sociodemographic characteristics and cognitive factors can influence task performance, this study aims to determine whether text comprehension mediates the relationship between these factors and competence in solving reality-based tasks. Additionally, it examines the impact of systematic linguistic variation in texts. Using an experimental design, 428 students completed three reality-based tasks (word count: M = 212.4, SD = 19.7) with different linguistic complexities as part of a paper-pencil test. First, students answered questions about the situation-related text comprehension of each text, followed by a mathematical question to measure their competence in solving reality-based tasks. The results indicate that: a) Tasks with texts of lower linguistic complexity have a significantly higher solution rate for both text comprehension (d = 0.189) and mathematical tasks (d = 0.119). b) Cognitive factors are significant predictors of mathematical solutions. c) Text comprehension mediates the relationship between the impact of students’ cultural resources and cognitive factors and their competence to solve reality-based tasks. These findings highlight the importance of linguistic complexity for mathematical outcomes and underscore the need to reinforce text comprehension practice in mathematical education owing to its mediating role.
Evaluation of the Teacher's Role in Promoting the Sense of Family Belonging: A Comparative Study between Contexts in Colombia and Spain
comparative study education policies educational participation needs assessment sense of belonging...
The sense of belonging is a human need that educational systems must foster to achieve student success. In the school setting, this feeling strengthens the bond between members of the institution and motivates families to become more involved with the school, improving the overall school climate. Teachers play a crucial role in promoting this sense of belonging by influencing the connection between families and the educational community. This study aims to understand how teachers from different contexts, one Colombian and the other Spanish, promote families' sense of belonging to the school. To this end, an evaluative, comparative, quantitative, and non-experimental study was conducted using a validated questionnaire applied to a significant sample in both contexts. The results show that, for teachers in both contexts, it is very important for families to feel satisfied with the education their children receive, which is why they strive to build trust in the teaching staff. The sense of belonging is more strongly promoted by teachers in charter schools and those with more years of experience in schools in the Spanish context. In the Colombian context, women are the ones who most actively promote it, thereby perpetuating gender roles. There is a need to provide specific training for teachers to help them develop this capacity in families, as well as to conduct further research to explore the differences that may influence the promotion of a sense of belonging.
Optimization of Critical Thinking by Empowering Collaboration and Communication Skills through Information Literacy-Based E-Books: In STEM integrated Problem-Based Learning
critical thinking collaboration communication information literacy stem...
This study aimed to optimize critical thinking by empowering reflective and impulsive students' collaboration, communication, and information literacy skills through information literacy-oriented e-books in STEM-integrated problem-based learning (PBL). The research method used was a descriptive explorative approach. The study subjects consisted of five reflective students and five impulsive students. The measurement of cognitive style used the Matching Familiar Figure Test (MFFT) instrument. Collaboration skills were assessed through observation sheets, critical thinking and communication skills were assessed through student worksheets based on problem-solving tasks, and information literacy was assessed through a questionnaire. The study found that reflective students excelled in critical thinking and information literacy, while impulsive students demonstrated superior collaboration skills. As for communication skills, reflective and impulsive students have different advantages for each indicator of communication skills. This study can conclude that implementing information literacy-oriented e-books through STEM-integrated PBL can optimize reflective and impulsive students' critical thinking, collaboration, communication, and information literacy skills. The implication of this study is the importance of integrating 21st century skills holistically in learning practices, especially in the digital era, to prepare the younger generation to face the challenges of the 21st century.
The Impact of Gamification-Assisted Instruction on the Acquisition of Scientific Concepts and Attitudes Towards Science Class Among Elementary School Students
attitude toward science classes elementary students gamification scientific concept...
This study addresses global concerns surrounding elementary students' science performance following the COVID-19, as a result of international tests such as Trends in International Mathematics and Science Study (TIMSS) highlight the ongoing challenges that urge the exploration of innovative educational approaches to improve science learning. This research employed gamification-assisted instruction and explored its impact on enhancing the understanding of science concepts and attitudes toward science class among fourth graders. The study adopted a quasi-experimental design and included an experimental group (ExG) that was taught using a gamification strategy and a control group (CoG) that was taught using a traditional method with a sample of 38 female elementary students from a public school in Jordan. Data were gathered using valid and reliable tools: the developed scientific concepts test and the Attitude Towards Science class measures. The ANCOVA analysis revealed that gamification significantly improves the acquisition of scientific concepts (η2=.208) and boosts a positive attitude toward science classes among elementary students (η2=.626). These findings encourage decision-makers to incorporate gamification into science teaching practices and methods.
Promoting Mathematics Problem-Solving Ability in Gamification Integration Using Augmented Reality
augmented reality gamification problems-solving...
The use of technology in education aims to improve students' problem-solving skills so that they have the skills needed by 21st century society in dealing with various kinds of challenges and problems. This study was carried out aiming to obtain the characteristics of augmented reality-based learning media for mathematics learning in student problem-solving skill, and obtain the results of the average difference in the problem-solving abilities of junior high school students. This research and development (R&D) study, employing the (Analyze, Design, Develop, Implement, and Evaluate) ADDIE model, investigated Augmented Reality (AR)-based learning media for mathematics to enhance junior high school students' problem-solving skills. The aim was to identify characteristics of effective AR media and assess their impact on problem-solving abilities. Quantitative data, collected from student problem-solving tests, were analyzed using a t-test in SPSS. The AR media featured virtual manipulation, virtual measurement tools, and real-world problem exploration. While the experimental group using AR showed a higher average problem-solving score compared to the control group using Problem-Based Learning (PBL), the difference was not statistically significant (t (df) = 0.638, Cohen's d = 0.0876). This lack of significance, despite the higher mean, is likely due to a small sample size and the limited integration timeframe, coupled with pre-existing skill variations. Future research should address these limitations to further explore the potential of AR in mathematics education.
Changes in Secondary School Students’ Grades From 2019 to 2022: A Longitudinal Study in the Context of the COVID-19 Pandemic
academic achievement secondary school distance learning face-to-face learning longitudinal data...
The aim of this research was to assess changes in secondary school students’ grades longitudinally, including the semester before the COVID-19 pandemic, the period of distance learning, and two semesters when students had returned to face-to-face learning. In this longitudinal study, n=263 Latvian students’ grades from the period of six semesters (autumn 2019 to spring 2022) were collected and analyzed for seven study subjects (mathematics, English, Latvian, biology, chemistry, physics, and literature), using Friedman’s ANOVA, and Wilcoxon test for comparison. Results show that grades increased for several study subjects during the beginning of the distance learning period (e.g., mathematics and Latvian). However, this initial increase diminished after students had returned to schools to study in-person, especially for the subjects of mathematics and Latvian (native language). Decreases in students’ grades after returning to face-to-face studies indicate possible accumulated negative long-term effects of distance learning. The dynamics of the grades differ in various study subjects (e.g., relative stability in chemistry, decrease in mathematics, Latvian, biology), thus justifying the approach to analyze each study subject or study field separately. This study gives insight into longitudinal changes in students’ academic achievement, following the same students throughout their whole secondary school period from 10th to 12th grade during the pandemic.
A Ten-Year Bibliometric Study on Augmented Reality in Mathematical Education
augmented reality bibliometric collaboration mathematical education scopus database...
This study analyzes trends, collaborations, and research developments on augmented reality (AR) in mathematics education using a bibliometric approach. Data were collected from the Scopus database on July 31, 2024, identifying 542 documents published between 2015 and 2024. After screening, 194 journal articles were selected for analysis. Using VOSviewer, the study produced visualizations related to document types, publication trends, journal sources, research subjects, institutions, countries, keywords, and author collaborations. The results show that 88.7% of the documents are journal articles, indicating that this topic is predominantly published in scholarly journals. Publication trends reveal significant growth since 2016, peaking in 2024, reflecting increasing global interest. Education Sciences and IEEE Access are among the top journal sources. Subject-wise, social sciences and computer science are the main disciplines exploring AR in mathematics education. Chitkara University (India) and Johannes Kepler University Linz (Austria) are leading institutions, while the United States, Malaysia, and Spain contribute the most publications. Keyword analysis shows rapid growth in research using terms such as "augmented reality" and "mathematics education," emphasizing the role of immersive technology in enhancing student engagement and conceptual understanding through visual and interactive learning. Influential authors like Lavicza, Mantri, and Haas highlight the importance of global collaboration. Based on a thematic analysis of the most-cited articles, this study proposes the AI Mathematical Education Impact and Outcome Framework. In conclusion, although research on AR in mathematics education has significantly advanced, further studies are needed to evaluate its effectiveness across varied educational contexts.
The Effectiveness of the Cooperative Learning Model in Enhancing Critical Reading Skills: A Meta-Analysis Study
cooperative learning model critical reading skills meta-analysis...
This study aims to evaluate the effectiveness of cooperative learning models in improving critical reading skills. This study uses a meta-analysis study method by analyzing 28 articles extracted from the databases of Scopus, Google Scholar, EBSCO, EmeraldInsight, Science & Direct, SpringerLink, Taylor & Francis, and ProQuest. The meta-analysis allows researchers to combine the results of previous research, providing a more comprehensive picture of how effective a particular approach is in teaching critical reading. The research findings show that cooperative learning models significantly improve essential skills of reading more effectively than traditional ones. This is shown by the effect sizes based on the fixed model, showing the overall standard difference in the mean is 0.784 (95% CI, 0.689 to 0.880) with p-values = 0.00 (<0.05). Using a cooperative learning model, The measure showed positive effect sizes on critical reading learning. Based on these results, it can be concluded that the cooperative learning model effectively improves essential reading skills. However, several factors, such as the quality of the facilitators and the teaching methods, influence the results. The implications of this study show the need for a broader application of cooperative learning models to improve critical reading skills in schools and other educational institutions, with adjustments to the needs and characteristics of students.
Interdisciplinary Mathematics Education: A Systematic Review
interdisciplinary approach interdisciplinary research mathematics education stem education systematic review...
Research in mathematics education and interdisciplinarity is varied and extensive, covering multiple approaches that reflect a growing interest in this type of perspective. The objective of this study is to systematize the findings of research on interdisciplinary mathematics education published between 2019 and 2024. The review was carried out following the guidelines of the PRISMA statement, allowing us to identify 49 articles published in journals indexed in the Web of Science (WOS) and Scopus databases. Subsequently, a content analysis was carried out to identify methodological and theoretical aspects present in the studies reviewed, such as methodology employed, education level of participants, disciplines integrated with mathematics, and types of interdisciplinary tasks proposed. Additionally, four main research themes were identified: (a) understanding of interdisciplinarity; (b) pedagogical strategies for interdisciplinary development in mathematics education; (c) interdisciplinarity for the development of mathematical skills; and (d) professional development of mathematics teachers. The results reveal a sustained increase in the number of publications, which reflects a growing interest in the interdisciplinary approach in mathematics education. Finally, several challenges and opportunities are highlighted for future research, including the need to develop an interdisciplinary teacher training model, the creation of pedagogical strategies that promote greater interconnection between disciplines, and the need to carry out more studies focused on early childhood and primary education in this area.
Tracing the Evolution of Autism Mathematics Learning: A Bibliometric Analysis
autism spectrum disorder (asd) bibliometric analysis content analysis mathematics learning...
This study presents a comprehensive bibliometric and content analysis of research on autism and mathematics learning from 2010 to 2024. A total of 131 peer-reviewed articles were retrieved from the Web of Science (WoS) database using keywords such as autism, mathematics, learning, and intervention. Bibliometric analysis was conducted to quantitatively examine publication trends, leading authors, contributing countries, and co-authorship networks, offering a macroscopic overview of the field’s evolution. Visualisations generated using VOSviewer further illustrated keyword co-occurrence and thematic clustering. Complementing this, content analysis provided a qualitative synthesis of research themes and conceptual progressions across the literature. The findings revealed a clear thematic evolution. Early research (2010–2015) predominantly focused on behavioural interventions, structured instructional approaches, and basic numeracy development. Mid-phase studies (2016–2020) introduced inclusive pedagogies, social-emotional considerations, and differentiated instruction. Recent research (2021–2024) has shifted towards personalised, technology-enhanced instruction, Universal Design for Learning (UDL), and the integration of digital tools in mathematics education. Despite this growth, several gaps remain. Research remains limited in addressing cross-cultural diversity, long-term evaluations of digital interventions, and the adaptation of pedagogies in underrepresented regions. This study emphasises the need for future research to explore culturally responsive frameworks, the sustainability of technology uses, and equity in mathematics education for autistic learners.
Building a Competency Framework for Teaching Natural Science Under the Blended Learning Model for University Education Students: A Delphi Study
blended learning competency framework delphi method natural science education teacher training...
This study aims to develop a competency framework for teaching natural science under the blended learning (BL) model for Natural Science education students at Thai Nguyen University of Education. Recognizing the increasing importance of BL in the context of modern education and the challenges teachers face during implementation, the modified Delphi method was employed to collect expert opinions, involving three rounds of surveys with 50 participants, including university lecturers and secondary school educational administrators. The research identifies seven core competency groups, including specialized knowledge, lesson design and evaluation competencies, classroom organization and management, student assessment and feedback, information technology competencies, experiment and simulation utilization in teaching, and basic knowledge of BL. The findings highlight the necessity of blending traditional teaching methods with modern technology to effectively implement the BL model, enhancing both the teaching process and students' learning outcomes. This framework is expected to serve as a crucial basis for teacher training universities to adjust their curricula and support educational administrators in fostering and enhancing the capacity of natural science teachers at the secondary level. This competency framework aims to support the professional development of Natural Science teachers and education students, ensuring their preparedness for the evolving demands of modern education. Furthermore, the study provides insights into the skills and knowledge that teachers need to acquire to adapt to the continuously evolving educational environment.