logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS

'Arduino' Search Results



...

In this research, After I have realized some technological applications in the course of general physics laboratory II of the science teacher program, this research aims to examine the effects of the students' attitudes towards technology and the information of the communication technology (ICT) with the mixed method. For this application, after the introduction of Arduino was done, it was used as a measuring instrument in the laboratory; it also used the Fritzing program for circuit diagrams and the e-support system for sending poster studies. The research was carried out with the 50 first-year students of the department of science education at Kocaeli University. In this study, the attitude scales toward technology and ICT were used to collect the quantitative data, and a semi-structured interview form was used to collect the qualitative data. For the quantitative analyses in the study, “t-Test for Dependent Groups” and “A Two-Way ANOVA was used for Complex Measurements”, for the qualitative analyses, “Descriptive Analysis” was used. The two analyses were combined according to the mixed method research model and interpreted. The results of the research showed that technological applications in the physics of the laboratory such as using arduino, fritzing program, and poster studies have a significant effect on the attitudes of students in the study group toward technology and ICT, and it was supported by the qualitative research.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.8.1.31
Pages: 31-48
cloud_download 799
visibility 1464
8
Article Metrics
Views
799
Download
1464
Citations
Crossref
8

Scopus
7

...

Recently, as low-cost microcontrollers such as those developed by Arduino and Raspberry Pi have become widely available, the term maker education has emerged as a hot topic in education. Teachers are increasingly using low-cost microcontrollers in their classes, but conducting a class that focuses on using a microcontroller may cause difficulties or problems, for the learner or for the instructor. To solve these problems, it was necessary to design a teaching and learning model for the use of low-cost microcontrollers to be applied at school sites. Accordingly, this study aimed to develop a teaching and learning model for using low-cost microcontrollers. As a result of this study, the author proposes a teaching and learning model that consists of six stages: topic selection, exploration of implementation methods, experimentation, production of teaching and learning materials, implementing lesson plans, and improvement. According to this procedure, teaching and learning materials were created and applied for the subject matter of a middle school unit on “Making Arduino Automobile.” The model developed in this study may provide a guideline for teachers who want to apply low-cost microcontrollers in their classes.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.9.3.921
Pages: 921-934
cloud_download 683
visibility 1217
2
Article Metrics
Views
683
Download
1217
Citations
Crossref
2

Scopus

...

Using unplugged coding activities to promote computational thinking (CT) among secondary learners has become increasing popular. Benefits of using unplugged coding activities involve the cost-effective implementation, the ability to promote computer science concepts and self-efficacy in learning computer programming, and the engaging nature of active learning through collaboration. However, there is insufficient information regarding qualitative investigation on how learners develop their CT skills while working on unplugged coding tasks. This study therefore developed unplugged coding activities using flowcharts for high school students to learn computer science concepts, and to promote their CT skills. The activities consisted of five missions encompassing the concepts of sequence, repetition, input & variable, condition, and loop with condition. The data collection was carried out with 120 high students whose participation was video recorded and observed. A thematic analysis revealed that patterns of CT development started from initially developed, to partially developed and fully developed stages, respectively. The various stages were derived from different abilities to apply the computer science concepts to complete the missions with different expressions of CT skills. In addition, the study proposed a 3S self-directed learning approach for fostering the CT development, composing of self-check (in pairs), self-debug (in pairs), and scaffolding. It is therefore suggested to use the 3S model integrated with the unplugged coding activities for developing CT among high school learners.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.9.3.1025
Pages: 1025-1045
cloud_download 620
visibility 1141
8
Article Metrics
Views
620
Download
1141
Citations
Crossref
8

Scopus

...

The Arduino microcontroller enables ordinary people to perform professional tasks that only traditional engineering professionals could perform. Recently, several educational cases have been applied to primary and secondary schools, which is a desirable attempt to popularize engineering education. This study meta-analyzed the effects of Arduino-based education in primary and secondary schools in Korea from the perspective of engineering education. Accordingly, 16 academic journals and dissertations were selected that verified educational effects by Arduino-based education to primary and secondary students in Korea, and 31 effect sizes were confirmed. According to the results of this study, the overall average effect size was 0.656, which confirmed that Arduino-based education had a positive educational effect. Furthermore, this study calculated the effect size as measured by categorical and continuous variables such as school level, the inclusion of curriculum, giftedness, publication status, the programming language used, publication year, number of sessions, and number of students. Implications were suggested from the perspective of engineering education. This study is meaningful because it suggests the application of Arduino to primary and secondary schools in engineering education by confirming the positive educational effect of Arduino-based education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.9.4.1503
Pages: 1503-1512
cloud_download 946
visibility 1576
6
Article Metrics
Views
946
Download
1576
Citations
Crossref
6

Scopus
5

...

The purpose of this study was to find the determinants of effective diffusion of educational robotics in rural areas. The study analysed the key components, difficulties, and major lessons of the successful case of the remote northern region of Russia – Sakha Republic. The study used a mixed-method approach consisting of interviews, survey, literature analysis, and participants’ observation.  In the survey participated 57 robotics teachers and 113 elementary, middle, and high school students of the Sakha Republic. From survey participants were randomly chosen 30 robotics teachers and 18 middle and high school students for the interview. The literature analysis explored reports and articles on the educational robotics activities in the Sakha Republic for the period of 2011-2018. Based on the findings, the study developed a process model with five principles and ten components that influenced educational robotics diffusion in the Sakha Republic. One of the main determinants of the model was a support system of public-private partnerships and a local community of educators. Another was the need to consider the local area’s constraints, possibilities, and culture when implementing any technology in the rural region's education. In the researched case two major determinants would not be possible and sustainable without strong leadership. The findings showed that strong local leadership could use knowledge of the local area to provide more appropriate solutions and could build the active support of the local community and public-private partnerships that would accelerate the diffusion of technology in the rural region's education.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.10.1.145
Pages: 145-159
cloud_download 423
visibility 889
2
Article Metrics
Views
423
Download
889
Citations
Crossref
2

Scopus
0

Computational Thinking Development: Benefiting from Educational Robotics in STEM Teaching

computational thinking educational robotics hands-on activities stem learning cycle

Cucuk Wawan Budiyanto , Kristof Fenyvesi , Afra Lathifah , Rosihan Ari Yuana


...

The delivery of science, technology, engineering and mathematics (STEM) learning to improve an individual’s competence and future career interests has become a critical scientific undertaking for teachers and researchers alike. A plethora of research has proposed various hands-on robotics activities built on constructivist theories, thereby facilitating the development of knowledge based on reality for scientific and non-scientific stakeholders. Robotics may become an essential focus point within technology provision, which is an essential underlying characteristic for the seminal development of computational thinking (CT). However, despite the potential benefit of CT in developing an individual’s problem-solving skills, strategies for improving this ability through hands-on robotics activities largely remain underexplored. This paper highlights the constructs drawn from hands-on robotics activities in a STEM workshop designed for pre-service teacher students. The qualitative research design involved eight participants to investigate the responses of pre-service teachers to a hands-on robotics activity intended to provide STEM material. The research findings emphasise the correlations between the CT principles and STEM learning phases and underscore the roles played by educational robotics to enhance previous literature on learning experience.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.11.4.1997
Pages: 1997-2012
cloud_download 1113
visibility 1658
6
Article Metrics
Views
1113
Download
1658
Citations
Crossref
6

Scopus
6

Virtual Laboratory Design for Learning Electro-Pneumatic Practices in Vocational High Schools

design instructional electro-pneumatics practical learning virtual laboratory

Mochamad Sukardjo , Uswatun Khasanah , Stephanus Turibius Rahmat , Khaerudin , Budi Setiawan


...

Teaching a subject in a vocational high school (VHS) requires specialized instructional design strategies. Recently, instructional VHS used a computer-based platform to teach theory and practice. The computer will assist teachers in creating instructional media. This study aims to design augmented reality-based virtual laboratory media for electro-pneumatic practicum learning in order to ease teachers and students to learn the pneumatic practice. It is specially designed for practical learning purposes. The method used in this research is research and development. The assessment results from Instructional design experts 4.5, material experts 4.5, media experts 4.4, and language experts 4.8. Based on the assessment of experts, this augmented reality-based virtual laboratory media is feasible to use. Next, the results of this study are a prototype of students' pneumatic practice tools installed on mobile phones consisting of eight worksheets. In the designed augmented reality media, 1) 3-dimensional pneumatics can be rotated in all directions so that students understand. 2) Pneumatic job sheet, where on the augmented reality media designed for the simulation circuit, there is an explanation of the components and how they work, and a simulation through markers.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.12.2.719
Pages: 719-737
cloud_download 444
visibility 1010
0
Article Metrics
Views
444
Download
1010
Citations
Crossref
0

Scopus
0

The Impact of Educational Robotics on Cognitive Outcomes in Primary Students: A Meta-Analysis of Recent Studies

cognitive outcomes educational robotics elementary education meta-analysis primary students

Meruyert Mukhasheva , Kalibek Ybyraimzhanov , Khapiza Naubaeva , Assem Mamekova , Bibigul Almukhambetova


...

In recent years, educational robotics has gained ground in educational policy around the world, and primary education is no exception. However, there has not yet been a thorough synthesis of methodologically appropriate empirical research on the effects of robotics upon cognitive performance among primary school students, which this paper attempted to do. Following literature screening, a total of eight studies published between 2018 and 2022 with a sample size of 567 children met inclusion criteria and were meta-analyzed. Resultantly, a medium aggregate effect size in favor of robotics experiments emerged (standardized mean difference of .641), which was significantly higher compared to non-robotics learning (p <.01). No between-study heterogeneity was detected. Subgroup analysis revealed a slightly larger overall effect for interventions on first- to third-graders rather than those in grades 4-6. Additionally, the analysis indicates that in order to enhance cognitive abilities in primary students, robotics interventions should be no longer than four weeks and involve robot construction. Based on the findings, implications, and suggestions are outlined for future research and practice.

description Abstract
visibility View cloud_download PDF
10.12973/eu-jer.12.4.1683
Pages: 1683-1695
cloud_download 417
visibility 698
0
Article Metrics
Views
417
Download
698
Citations
Crossref
0

Scopus
0

...